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1. INTRODUCTION

The main aim of the thesis is to construct some irreducible infinite-dimensional
modules over the quantized algebra Uy(gl,.,,), which are unitarizable with respect
to the real form u(m,n).

Some special series of representations of the classical group of pseudo-unitary
matrices U(m,n) were described in the paper [5]. These representations were
constructed using intuition from the representation theory of infinite-dimensiolnal
groups. A basis of the vector space of such representations is given in terms of
the Gelfand-Tsetlin formalism. The action of the Lie algebra gl ,, is given by the
standard formulas for finite-dimensional irreducible representations. These infinite-
dimensional representations admite ¢ - analogs, which are described in the paper.

Representations from the present paper can be considered just as U,(gl,.,) mod-
ules. In this sense they are some special case of construction described in [I] and
have some remarkable properties which we will use later. Note that, authors did not
study unitarazibility of such representations.

The case n = 1 was considered in the paper [3]. We provide a construction that
generalizes some results from [3] to the case n > 2.

Throughout the paper we assume m > n.



2. FINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF U, (gly)

Suppose q is a real-valued parameter, 0 < ¢ < 1.
For z € C we denote by [z] and [z] the following ¢ - numbers

o= L=t o =L q_f
q9—q q— qf
Note that, [z] > 0 for real z and [z] = 0 <= z € {7}, -Z, where i is the imaginary

unit.
For all n € N we set [n]! = [1][2],...,[n] and [0]! = 1.

Definition 2.1. Algebra U,(gly) is an associative algebra with unit over
the field of complex numbers with generators Ki,..., Ky, K;', ... ,K&l,
Ey,...,En_1,F1,..., Fy_1 and following relations

K,K; = K;K;, K,K;'=K;'K; =1

KE;K; ' = 5z‘,j*5z‘,j+1Ej, K F K = q*5i,j+5i,j+1pj
KK} K‘lKi
[E;, F,] = 6;,, ——+1 = [EL B = [F, Fj] =0, for [i — j| >2
q—q*
E}Ei — 2|E;EE; + Ei E? =0, FP Fiy — 2]FFyn Fi + Fon FY =0

1

Let us fix a set of integers A = (Ay,...,Ay) with the following condition
/\i_)‘i+1 ZOfOl"Zzl,Z,,N—l

Suppose that A and p are such sets of integers. We will call them interlacing and
write p < A, if the following condition is satisfied

M2 > A2 2 AN 2 IN—1 = AN
Consider the irreducible finite-dimensional U,(gly) - module with the highest
weight ¢* (q)‘l ...,@*V). Denote this module by L(\).
The restriction of L(A) to the subalgebra of U,(gly) isomorphic to U,(gly_;) and

generated by Ky, ..., Ky_1, Kl_l, - ,K&l_l, Ey,...,En_o, F1,..., Fy_o satisfies the
following

Proposition 2.2 ([7], Proposition 2.12).

Resh_, L(\) = P L(w)

H=A

Since all irreducible representations of U,(gl,) are one-dimensional we obtain a
basis in L(A) consisting of Gelfand-Tsetlin tableaux with fixed top row that is equal
to A\ [4].

We will denote by A these tableaux. The element from A with coordinates (i, k)
will be denoted by A; . Here ¢ is the colomn index and k is the row index. Rows and
colomns are numbered starting from the bottom and left respectively. We denote
the basis vector corresponding to Gelfand-Tsetlin tableau A by &,.

Theorem 2.3 (4], 7.3.3, Theorem 24). The action of generators of the quantiazed
algebra Uy(gly) in the irreducible finite-dimensional representation L(\) is given by
the following formulas in the basis of Gelfand—Tsetlm tableaux.

k—1
Kipép = ¢* Mgy, where ag (A Z)\lk — ZA”“ 1, fort<k<N (2.1)

Eka—ZaJk )€+, (k) Fk:fA—Zb]k )Ea—e;ky, for 1<k <N -1



k+1 k-1

[Tk — Lk [Lige—1 — L]
=1 =1
aje(A) = —— , bin(A) = —, ) (2.2)
[T [k — ikl [T [k — k]
i=1,i7#] i=1,i#]

where l@j = /\i,j —1
We use the convention that if A £ ¢;(k) is not a Gelfand-Tsetlin tableau, then the
corresponding coefficient of this summand is equal to zero.



3. INFINITE-DIMENSIONAL REPRESENTATIONS OF U,(gly)

Let us fix some positive integers n, m, where m > n > 1 and let N =n + m.
Consider the set of complex numbers A = (A1, \a, ..., Ax) of a special type

A= (21+)\/17 Zl+)\127 s 721_'_)\;1; Z3+)\;7,+17 cee 7Z3+)\;n; 22+)\:n+17 22+)\:n+27 s 722+)\/]V)7
where z1, 29, 23 € C and the following condition is satisfied

)

21 — R3,k2 — Z3,%1 — k2 ¢Z+ Z (31)

Inq

Numbers A} are assumed to be integers with the following non-increasing condition
N, — Ajyq € Zsg for all i #n,m (3.2)

In the case m = n we treat z3 as an extra parameter, the sense of which will
become clear after Definition 3.1

We will call such an N - tuple A an admissible top row corresponding to the pair
(n,m).

Suppose we have two such N - tuples A and p that are admissible top rows
corresponding to pairs (n,m) and (n — 1, m) respectively.

We will say that A and p interlace and write p < X if their parameters z; coincide
and the following condition is fulfilled

N =N 2N 2 2N,
M = N1 2 fgy 2 - 2 oy 2 Ay 2 oy
Nt Z Mgy 2 Ny 200 2 Ny g 2 iy 2 Ny
Further we will consider triangular tableaux of Gelfand-Tsetlin type, which are

associated to an admissible top row A. Rows and coloumns in such tableaux are
indexed as in the finite-dimensional case.

Definition 3.1. Suppose that A is an admissible top row corresponding to the pair
(n,m). We will say that the triangular tableau with complex numbers and the top
row A is a modified Gelfand-Tsetlin tableau iff every two rows in such tableau are
interlacing.

In the case n = m we suppose that all numbers in the third part of the tableau
are equal modulo 1 to each other. We will denote this residue by z3.

FIGURE 1. Modified Gelfand-Tsetlin tableau
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Note that, inside the first, second and the third parts of the tableau standard
Gelfand-Tsetlin inequalities will hold for the real part of tableau’s elements, but
there is no links between different parts of the tableau (see Figure |1)).

Denote by S, the set of all modified Gelfand-Tsetlin tableaux with the fixed
admissible top row A.

Consider the countable-dimensional vector space V) = span (& | A € Sy).

In the space V), we define the action of the algebra U,(gly) on the basis of modified
G-T tableaux by formulas (2.1), (2.2)). It is assumed that coefficients a; and b;, in
formulas (2.1)), are zero by definition if A & ¢;(k) is not an admissible tableau.

The denominators of coefficients in formulas do not vanish due to the con-

dition ({3.1)).

Theorem 3.2. Suppose that A is an admissible top row. Then formulas (2.1)), (2.2)
define a representation of Uy(gly) on Vj.

Remark 3.3. Apparently, representations of such a type were firstly obtained in
the work [5]. It was done using some intuition from representation theory of infinite-
dimensional classical groups. Representations in the present paper can be considered
as their natural ¢ - analogs.

Note that, a much more general construction of U,(gly) modules was obtained in
the paper [I], but authors did not study unitarazibility of such representations.

Proof. We will fix A = (\|,...,\Ny) and vary parameters zi, 29, 23. Let R be a

noncommutative polynomial in the generators, which vanishes in U,(gly). Apply

R to some basis vector £y, corresponding to the tableau A € S). We get a linear

combination of basis vectors with coefficients that are rational functions in two

variables ¢*17% u ¢**~*2. We will show that all such coefficients, in fact, vanish.
We introduce the following notation: ¢, = 21 — 23, to = 23 — 2

= {(tlatQ) € Z2|tl > Mgl — Ayt 2> Mg — )\m}

Denote one of such coefficients by C (¢'*, ¢*2), where C(x, y) is a rational function.

Note that, the top row of tableaux is the highest weight of a finite-dimensional
representation for all (¢1,t3) € 4. Moreover, if values ¢1,ty increase inside of %,
then such finite-dimensional representation is growing and contain more and more
tableaux from V).

Therefore, for sufficiently large values (t1,t) € 4+, the formulas for the action of
R on the £, in such finite-dimensional representation are the same as , .

Denote the set of all such (¢1,t2) by the symbol vi. Then for all (¢;,t) € 75 we
have C (¢, ¢2) = 0.

It is clear, that v3 contains a two-dimensional Zs - lattice. Therefore, C (¢, ¢'2)
is identically zero. 0

The representation afforded by Theorem [3.2] will be denoted by 7.



4. UNITARIZABLE REPRESENTATIONS OF U, (u(m,n))

The main aim of this section is to introduce three series of unitarizable represen-
tations of U,(u(m,n)) of the form Tj.

There is an involution * on the algebra U,(gly), which endows it with the structure
of a x - algebra.

This involution is defined on the generators as follows

K =K Bl =(“)"™F, F = (-1"E,

3 K3

where 9,,; is the Kronecker delta.

Definition 4.1. The algebra U,(u(m,n)) is the * - algebra (U,(gly), *), where = is
defined as above.

Definition 4.2. A representation 7" of the algebra U,(gly) on the space V' is called
u(m,n) unitarizable, if it is equivalent to a * - representation of U,(u(m,n)). More
precisely, there is an Hermitian scalar product in the space V', such that

(T(a)v1,v9) = (v1,T(a")ve), Ya € U,(gly), Yvi,v9 € V. (4.1)

It is assumed that the Hermitian scalar product is linear with respect to the first
argument and antilinear in the second one.

Now we focus only on unitarizable representations of U,(u(m,n)) of the form 7).

Consider a representation T) and define a scalar product on V) in the following
way

(fA,SA) = H(A), VA € Sh,

where H(-) is a strictly positive function on the set of modified Gelfand-Tsetlin
tableaux with the top row is equal to .

Suppose that (-,-) is U,(u(m,n)) - invariant in the sense of the definition above.
Then we immediately conclude that

H(A +¢;(k)) bik(A+e;(k)) (—1)m bik(A +€;(k))
H(A) a;j k() a; k(M)
for all A € Sy such that A +¢;(k) € Sy.
Note that, the strict positivity of the right hand side of the equality and
the existence of a solution of this reccurence relations are sufficient conditions for
unitarazibility of the representation 7).

We need to introduce some notation. Define the following expression for all mod-
ified G-T tableaux A.

N Tyl — L Ty(lig — Lig1 +1
N(A) = H ( H I ( ) H Fq(l(i,k‘l - lj,k—l + i)) ’ (43)

lig—q — s
k=2 \1<i<j<k allig—1 = L) 1<i<j<k—1

= (=1)m* . (4.2)

where I'; is the ¢ - gamma function which is defined as follows [4]:

_G-)G-2) (3¢
L@ =g~ = (=)' ey

where (a;¢)o = [[ (1 — ag’™!) is the Pochhammer’s symbol.
j=1
The ¢ - gamma function satisfies the functional equation

Ly(z+1) = [2]T(2)
Remark 4.3. The expression (4.3) satisfies the following identity
N(A+e;(k) _ bjw(A+¢;(k))

N aed) 44
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Now we are ready to give an explicit construction of three series of unitarizable
U,(u(m,n)) modules.

Suppose that we have a set of real numbers A\ € RY that satisfy the following
conditions

e \i — Aip1 € Z>p for all ¢ #n,m

e M — A éE7Z (4.5)

We set
)\0 = ()\1 +it0, )\2 +it0, ceey )\n—FZto, )\n+1> ey )\m; >\m+1 —ito, >\m+2 —ito, ey )\N—ito),

where ty =

ﬁ.
Then A\° is an admissible top row corresponding to the pair (n,m). We denote
the representation Tho by T%.

Proposition 4.4. Ifn =1, then the representation T} of the agebra U,(u(m,n)) is
unitarizable.
For n > 2 we have the following sufficient condition for T} to be unitarizable

Remark 4.5. Inthecasen >2and \y == ... =\, A1 = Api2 = ... = Ay
the sufficient condition above is not necessary and the representation 7% will be
unitarizable for all admissible values of parametres A\ that satisfy (4.5]).

Remark 4.6. Representations 75 disappear in the classical limit ¢ — 1.

Proof. In this proof we denote elements of A = Re (A”) by ), for A° € S)o.

Coefficients in formulas for such representations we denote by a5,(A) and
b3 (A).

Note that, a,(A) = a;x(A) for k <m — 1 and b5, (A) = bjx(A) for k < m.

For all x € R the following equalities hold

[z £ ti] = Li[z],, [r+2ti] = —[x] (4.7)

Now it’s clear, that b5, (A) € R if the pair of indices (j, k) lies in the third part of

the tableau and b3, (A) € i - R if the pair (j, k) lies in the first or in the second part

of the tableau.
Then we set

HA) = J[ (- (=== N(A°)
(i,j)€TUIT

We need explicit expressions of coefficients a3, (A) and b5 ,(A). They are as follows

g[li,m+1 —ljm
a3 (N) = =[lmi1 = L+ [t tmir = Liml+ 5 (4.8)
IT [lim = liml
i=1i
( 1—)1 Ligr1 — Lkt H) i1 — L]
i:(i,k+1)eIUIT i:(t,k+1)ell]
ai, (A) = — , 4.9
#l) 0 Ge-Gde I w1 (49)
:(1,k)eIUIT i:(4,k)elll
i#£]
it (j, k) € I11.
( H) Uikr1 — likl+ ( l_)[ ik — ikl
i:(i,k+1)elll i:(i,k+1)elUll
0t (A) = +i - 20 ’ , 4.10
i) 0 =G I ler—bn 410
i:(s,k)elIl i:(2,k)eTUIT

i#]
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if (,k) e TUII.
In the last expression the plus sign is taken if (j, k) € I, and minus sign is taken

if (7,k) € I1.
[lzm - lj7m+1]
! (4.11)

Y

’:]S

1

b A) =
Jam+1( ) [ll,erl - lj,m+1]+[lm+1rm+1 - lj’m+1]+

[lz m+1 — l],m+1]

—3|5

.

N,
Al
S

if (j,m+1) € II1.

1 H[lz,m - ll,m-‘rl]—l—
=L (4.12)

bim-{-l(A) =1 [l —1 1] m
m+Lmtl mt 1_[2[ im+1 — ll,m—i—l]—i—

] IT{lim = bngrme]+
bfn-‘rl,m-‘rl(A) = _2 ' [l . l ] TZn:1 (413)
1,m+1 m+1,m-+1 H [lz gl — lm+1,m+1]+
1=2
T lip—Lale  IT [lir— — Ligl
ir(i,k—1)eIUI T ir(ik—1)elll
b (A) = , 414
i+ 0 Ut I e 0 1)
ix(i,k)eIUI T ix(ik)eIIT
i#£]
if (j,k) € I11.
11 lik—1 — Lik)+ I1 lik—1 — L]
Ci(k—1)elll ix(i,k—1)eIUI T
iA) 0 Gt I el (4.15)
ir(i,k)EITT ix(i,k)ETUIT
i#£]

if (j,k) e TUII.
The rule for signs is the same as for (4.10)).
Now we show that the condition (4.6) is sufficient for the following inequality to

be fulfilled
b% (A +¢e;(k
VA € Syo: A” +¢5(k) € Syo  (—1)0mk il —~ (AJ)( ) >0 (4.16)
j,k:

Note that, this inequality holds for £ < m because of standard Gelfand-Tsetlin
inequalities for elements of the third part of tableaux. Moreover, it is easy to prove,

that this inequality is satisfied for k > m + 1, (j, k) € I11.
It is clear, that if n = 1, then 7% is unitarizable for all admissible values of

parameter A\, and the statement from the remark [4.5] is fulfilled
We see that the property of 7§ to be unitarizable does not depend on the third

part of the tableaux at all.
From (4.16)) we have the following conditions which we need to verify.

k—1 k+1
IT Uigr =L —1) IT (ligs1r —lin)
. >0, (4.17)
IT (ir—lix — Dl — Lix)
1=m-+1

fork>m+2and j=1,k—m.
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k—m—1 k—m+1

T Gig—r—Lx—1) TI (i1 — k)
i=1 i=1
k—m

IT (i = L = D)Lk — L)

=1

fork>m+2and j=m+1,k.

> 0, (4.18)

(lm—l—l,m—i—l - ll,m—i—l)(lm—f—l,m—i-l - ll,m—i—l - ]-)

4.19
(Int1,m+2 — mt1) (lns2ma2 — limt1) > 0, ( )

for (7,k) = (1,m+1).
(lmr1 = b rme1) (limar = bnprmyn — 1) (4.20)

(ll,m+2 - lm+1,m+1)(l2,m+2 - lm—l—l,m—l—l) > 07

for (j,k) = (m+1,m+1).

Now we check that the condition m > A, .1 — A, + n — 2 is suffucient for
(4.17),(4.18]),(4.19),(4.20) to be satisfied for n > 2.

For (4.19)) we need the following inequalities

ll,m—i—l 2 )\n - 17 lm—i—l,m—i—l S >\m+l -—m—1

We immediately get

lm-i—l,m—i—l - ll,m+1 S )\m—f—l - >\n —m—-m< 2—n S O
We alse have, [, 41m+1 — lim+1 —1 < 0. Then we proceed similarly with the
remaining two factors in (4.19) and show that each of them is negative. We are
done with @D
For @ we need the following

it =l it =12 A = 1= Ay = D) 4m+1-1=

=X\ — A1 +tm>n—22>0, (421)
lomia—lmiimir = A —2— A1 — 1) +m+1= (4.22)
=\~ A1 +tm>n—22>0
Forweuse
lig—lix < App1—i— A +j<m-n—-2—1+7< (4.23)
<m-n—-2—-(m+1)+k—m=k—m—-n—-3<0, '
Lot — L < st — i — A+ < 0, (4.24)
bkt —Lig =1 < Ampr —i—An+j—1<0 (4.25)
And for (4.18) we use
ig—lix—1> A —i—Ap1— 1) +j—1= = Appn —i+j > (4.26)
>n—2-m-—i+j>k—-m+4+n—-1>m+2—-m+n—-1=n+1>0 '
Lt — Lig = An—i— st — 1) 4§ > 0 (4.27)
bt —Lg =12 A —i— psr — 1)+ — 1> 0 (4.28)

Now we are done with it and we are going to show that such representations do
not sustain passage to the limit as ¢ — 1.
To do that, we use the orthonormal basis £, = 8 and we look at the coefficient

VH®
(Enhs €hseyim) = =1/ =@ (BB, (A + 25(m)

It is easy to see from (4.8) that the expression from the right hand side of the
equality does not have the classical limit. 0
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Consider the second family of unitarizable representations.
Let us fix two non-negative integers k, [ such that m > 2n + k + [. Suppose that
A is an admissible top row corresponding to the pair (n,m), which is of the form

A=A A At s Atk 0y 0 Attty A Aty - - Ay) € RY
The representation T we denote by T7.

Proposition 4.7. If the following conditions for A are satisfied

M >n+k—1, Ay >n+1—1, (4.29)
m > Apa1 — A+ 10— 2, (4.30)

then TY is a unitarizable representation.
Moreover, in the case Ay = Ao = ... = Ay, A1 = a2 = ... = Ay conditions
(4.29), (4.29) are not necessary. In this case we have a weaker sufficient conditions
“<m-n—Il+1 A <m-n—k+1 (4.31)

Remark 4.8. If n = 1, we can drop the condition m > 2n + k + [ and require the
fulfillment of (4.29)) and (4.31). Then 7% is a unitarizable representation.

Remark 4.9. Representations from Proposition[d.7]can be considered as ¢ - analogs
of representations from the paper [5]. All sufficient conditions for quantized case are
absolutely the same as for the classical one.

Now we describe the third series of unitarizable representations of U,(u(m,n)).
Consider an admissible top row A corresponding to the pair (n,m) which is of the
following form

A=(a+xi,...,a+xi; N\, ..., \m;a+m—xi,... a+m—xi),

where \,,..., A, ER,a €R, z € (0;—&), T F# ==

2lng”

The representation T we denote by T%.
Proposition 4.10. The representation T} is unitarizable.

Proof. Note that, coefficients a;;(A) and b; ;(A) for such representation are products
of factors of the form

. il = T2 4sin?(zIn q)
ly + ix]ly — ix] = [y M7=y >0

for some y € R.

It follows that b, x(A) = b, (A). Then it is easy to see that the desired inequality
for the right hand side of (4.2)) holds. O



13

5. SOME PROPERTIES OF REPRESENTATIONS T}

In this section we will show some properties of representations 7T}, including their
irreducibility and we will see that T, 75 and 73 are pairwise non-equivalent for
different values of parameters.

Example 5.1. Consider the representation Ty of the algebra U,(gls). The top row
A is of the following form A = (a + zi;a + 1 — i), where a € R\Z, z ¢ 7.
Parameter z3 is equal to zero (3.1)).

The action of U,(gls) is determined by the formulas

Ky = M, Koy = @+t (5.1)
Eién = —la— Mg +zilla — My — 2iléate, 1), Fiéa = Eae () (5.2)

It is clear that these formulas are invariant under the transformation x — —z.
Moreover, the eigenvalues of elements from the Cartan subalgeba C [K = Kﬂ do
not depend on x at all. But the quadratic Casimir

q_lKlKgl -+ qule . QKlKgl -+ q—lele
—1)2 —2=hk+ —1)2
(¢—q") (¢—q")
acts in such representation as multiplication by a constant which is equal to [:m]z
This implies that such representations could not be equivalent for all values of x.
The action of Cartan subalgebra does not separate such representations into
equivalence classes, but some other commutative subalgebra of U,(gl,) does that:

I'? = (K1, K,,C) = (Zy,Z,), where we denote the center of Uy(gl;) by Z; . The
situation is a little bit similar in the general case for representations 7).

C=FEF + -2

Let Zy denote the center of U,(gly). The algebra Zy is finitely generated by

some special elements ¢y, ..., cyn [0, Theorem 14].
Consider the chain of algebras
Uy(gly) C Uy(gly) C ... C Uy(aly), (5.3)

where the inclusions are the same as was pointed in section [2]
By the very construction, Fflv is a commutative subalgebra of U,(gly) that is
generated by Z1,...,Zy. It is called the Gelfand-Tsetlin subalgebra.

Proposition 5.2. [2, Theorem 4.3| The action of 'Y in the irreducible finite-
dimensional representation L(\) is diagonizable in the basis of Gelfand-Tsetlin
tableaux:
CT‘,S(€A) = ’Yr,s(A)fA, fOT r < N7 0 <s< T,
PYT,S(A) =Yrs q ° 1l%ses (q2l17ra 212’T7 s 7q21T’T) ’ (54)
—r24(r+1)s

T

where ., = [s]![r — s]lg and e, are the elementary symmetric polinomials.

By analogy with the theorem [4.2] one can prove the following

Proposition 5.3. Suppose that \ is an admissible top row. Then the action of
Fév in the representation T is diagonizable in the basis of modified Gelfand-Tsetlin
tableaux:

TA(CT,S)(SA) = ’VT,s(A)fA, forr <N, 0<s <.

Corollary 5.4. Representations from series Tx, Ty and T5 are pairwise non-
equivalent for different values of parameters.

Corollary 5.5. The action of Fé\] separates tableaux in the representation T. It

means that for every two modified G-T tableax there exists an element of Fév that
has non-equal eigenvalues on that tableauz.
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Proof. Suppose we have two tableaux Ay, Ay € Sy such that 7, s(A1) = 7,.5(A2) for all
r < N, 0 <s <r. Then by Proposition [5.3| we get that for all » < N the collections

1 1 1 2 2 2 . . .
¢ ?2r o g?nr) and <q211»T, e ,qzlm> differ by a permutation. That is

possible iff this permutation is the identity because of the condition [3.1] O]

Lemma 5.6. Suppose that \ is an admissible top row and W C V) is an invariant
subspace. If a1&pn,+, ..., a1én, €W foray,...,a #0, then &y, ..., 6r, € W.

Proposition 5.7. Suppose that X\ is an admissible top row. Then T is an irreducible
representation.

Proof. It W C V) is an invariant subspace, then it follows from Lemma that
the corresponding subrepresentation is a direct summand of 7). It is easy to see
that one can obtain every tableau from V) by increasing or decreasing the value of
elements in the tableau p by an integer (see Figure .

A A o At d At A Mtt Amez - Av1 Av
)\1 /\2 oo )\nfl )\n+1 /\n+1 B )\m /\m+1 >\m+2 s /\Nfl
e SV VN VPR W )\)\
>\1 )\2 . /\n+1 m+1 Am+2
WY N .

At N A
po= N RN

)\n+1 )\n—i-l
>\n+1 )\nJrl
>\n+1
)\nJrl
)\n—l-l
FIGURE 2

Corollary 5.8. The following branching law holds
Res%_1 T\ = @ T,

P=A
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