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1. Introduction

The main aim of the thesis is to construct some irreducible infinite-dimensional
modules over the quantized algebra 𝑈𝑞(gl𝑛+𝑚), which are unitarizable with respect
to the real form u(𝑚,𝑛).

Some special series of representations of the classical group of pseudo-unitary
matrices 𝑈(𝑚,𝑛) were described in the paper [5]. These representations were
constructed using intuition from the representation theory of infinite-dimensiolnal
groups. A basis of the vector space of such representations is given in terms of
the Gelfand-Tsetlin formalism. The action of the Lie algebra gl𝑛+𝑚 is given by the
standard formulas for finite-dimensional irreducible representations. These infinite-
dimensional representations admite 𝑞 - analogs, which are described in the paper.

Representations from the present paper can be considered just as 𝑈𝑞(gl𝑛+𝑚) mod-
ules. In this sense they are some special case of construction described in [1] and
have some remarkable properties which we will use later. Note that, authors did not
study unitarazibility of such representations.

The case 𝑛 = 1 was considered in the paper [3]. We provide a construction that
generalizes some results from [3] to the case 𝑛 ≥ 2.

Throughout the paper we assume 𝑚 ≥ 𝑛.
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2. Finite-dimensional irreducible representations of 𝑈𝑞(gl𝑁)

Suppose 𝑞 is a real-valued parameter, 0 < 𝑞 < 1.
For 𝑥 ∈ C we denote by [𝑥] and [𝑥]+ the following 𝑞 - numbers

[𝑥] =
𝑞𝑥 − 𝑞−𝑥

𝑞 − 𝑞−1
, [𝑥]+ =

𝑞𝑥 + 𝑞−𝑥

𝑞 − 𝑞−1

Note that, [𝑥]+ > 0 for real 𝑥 and [𝑥] = 0 ⇐⇒ 𝑥 ∈ 𝜋𝑖
ln 𝑞

·Z, where 𝑖 is the imaginary
unit.

For all 𝑛 ∈ N we set [𝑛]! = [1][2], . . . , [𝑛] and [0]! = 1.

Definition 2.1. Algebra 𝑈𝑞(gl𝑁) is an associative algebra with unit over
the field of complex numbers with generators 𝐾1, . . . , 𝐾𝑁 , 𝐾

−1
1 , . . . , 𝐾−1

𝑁 ,
𝐸1, . . . , 𝐸𝑁−1, 𝐹1, . . . , 𝐹𝑁−1 and following relations

𝐾𝑖𝐾𝑗 = 𝐾𝑗𝐾𝑖, 𝐾𝑖𝐾
−1
𝑖 = 𝐾−1

𝑖 𝐾𝑖 = 1

𝐾𝑖𝐸𝑗𝐾
−1
𝑖 = 𝑞𝛿𝑖,𝑗−𝛿𝑖,𝑗+1𝐸𝑗, 𝐾𝑖𝐹𝑗𝐾

−1
𝑖 = 𝑞−𝛿𝑖,𝑗+𝛿𝑖,𝑗+1𝐹𝑗

[𝐸𝑖, 𝐹𝑟] = 𝛿𝑖,𝑟
𝐾𝑖𝐾

−1
𝑖+1 −𝐾−1

𝑖 𝐾𝑖+1

𝑞 − 𝑞−1
, [𝐸𝑖, 𝐸𝑗] = [𝐹𝑖, 𝐹𝑗] = 0, for |𝑖− 𝑗| ≥ 2

𝐸2
𝑖 𝐸𝑖±1 − [2]𝐸𝑖𝐸𝑖±1𝐸𝑖 + 𝐸𝑖±1𝐸

2
𝑖 = 0, 𝐹 2

𝑖 𝐹𝑖±1 − [2]𝐹𝑖𝐹𝑖±1𝐹𝑖 + 𝐹𝑖±1𝐹
2
𝑖 = 0

Let us fix a set of integers 𝜆 = (𝜆1, . . . , 𝜆𝑁) with the following condition
𝜆𝑖 − 𝜆𝑖+1 ≥ 0 for 𝑖 = 1, 2, . . . , 𝑁 − 1.

Suppose that 𝜆 and 𝜇 are such sets of integers. We will call them interlacing and
write 𝜇 ≺ 𝜆, if the following condition is satisfied

𝜆1 ≥ 𝜇1 ≥ 𝜆2 ≥ . . . ≥ 𝜆𝑁−1 ≥ 𝜇𝑁−1 ≥ 𝜆𝑁

Consider the irreducible finite-dimensional 𝑈𝑞(gl𝑁) - module with the highest
weight 𝑞𝜆

𝑑𝑒𝑓
= (𝑞𝜆1 , . . . , 𝑞𝜆𝑁 ). Denote this module by 𝐿(𝜆).

The restriction of 𝐿(𝜆) to the subalgebra of 𝑈𝑞(gl𝑁) isomorphic to 𝑈𝑞(gl𝑁−1) and
generated by 𝐾1, . . . , 𝐾𝑁−1, 𝐾

−1
1 , . . . , 𝐾−1

𝑁−1, 𝐸1, . . . , 𝐸𝑁−2, 𝐹1, . . . , 𝐹𝑁−2 satisfies the
following

Proposition 2.2 ([7], Proposition 2.12).

Res𝑁𝑁−1 𝐿(𝜆) =
⨁︁
𝜇≺𝜆

𝐿(𝜇)

Since all irreducible representations of 𝑈𝑞(gl1) are one-dimensional we obtain a
basis in 𝐿(𝜆) consisting of Gelfand-Tsetlin tableaux with fixed top row that is equal
to 𝜆 [4].

We will denote by Λ these tableaux. The element from Λ with coordinates (𝑖, 𝑘)
will be denoted by 𝜆𝑖,𝑘. Here 𝑖 is the colomn index and 𝑘 is the row index. Rows and
colomns are numbered starting from the bottom and left respectively. We denote
the basis vector corresponding to Gelfand-Tsetlin tableau Λ by 𝜉Λ.

Theorem 2.3 ([4], 7.3.3, Theorem 24). The action of generators of the quantiazed
algebra 𝑈𝑞(gl𝑁) in the irreducible finite-dimensional representation 𝐿(𝜆) is given by
the following formulas in the basis of Gelfand-Tsetlin tableaux.

𝐾𝑘𝜉Λ = 𝑞𝑎𝑘(Λ)𝜉Λ, where 𝑎𝑘(Λ) =
𝑘∑︁

𝑖=1

𝜆𝑖,𝑘 −
𝑘−1∑︁
𝑖=1

𝜆𝑖,𝑘−1, for 1 ≤ 𝑘 ≤ 𝑁 (2.1)

𝐸𝑘𝜉Λ =
𝑘∑︁

𝑗=1

𝑎𝑗,𝑘(Λ)𝜉Λ+𝜀𝑗(𝑘), 𝐹𝑘𝜉Λ =
𝑘∑︁

𝑗=1

𝑏𝑗,𝑘(Λ)𝜉Λ−𝜀𝑗(𝑘), for 1 ≤ 𝑘 ≤ 𝑁 − 1
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𝑎𝑗,𝑘(Λ) = −

𝑘+1∏︀
𝑖=1

[𝑙𝑖,𝑘+1 − 𝑙𝑗,𝑘]

𝑘∏︀
𝑖=1,𝑖 ̸=𝑗

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]

, 𝑏𝑗,𝑘(Λ) =

𝑘−1∏︀
𝑖=1

[𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘]

𝑘∏︀
𝑖=1,𝑖 ̸=𝑗

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]

, (2.2)

where 𝑙𝑖,𝑗 = 𝜆𝑖,𝑗 − 𝑖

We use the convention that if Λ ± 𝜀𝑗(𝑘) is not a Gelfand-Tsetlin tableau, then the
corresponding coefficient of this summand is equal to zero.
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3. Infinite-dimensional representations of 𝑈𝑞(gl𝑁)

Let us fix some positive integers 𝑛,𝑚, where 𝑚 ≥ 𝑛 ≥ 1 and let 𝑁 = 𝑛 + 𝑚.
Consider the set of complex numbers 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑁) of a special type

𝜆 = (𝑧1+𝜆′
1, 𝑧1+𝜆′

2, . . . , 𝑧1+𝜆′
𝑛; 𝑧3+𝜆′

𝑛+1, . . . , 𝑧3+𝜆′
𝑚; 𝑧2+𝜆′

𝑚+1, 𝑧2+𝜆′
𝑚+2, . . . , 𝑧2+𝜆′

𝑁),

where 𝑧1, 𝑧2, 𝑧3 ∈ C and the following condition is satisfied

𝑧1 − 𝑧3, 𝑧2 − 𝑧3, 𝑧1 − 𝑧2 /∈ Z +
𝜋𝑖

ln 𝑞
· Z (3.1)

Numbers 𝜆′
𝑖 are assumed to be integers with the following non-increasing condition

𝜆′
𝑖 − 𝜆′

𝑖+1 ∈ Z≥0 for all 𝑖 ̸= 𝑛,𝑚 (3.2)

In the case 𝑚 = 𝑛 we treat 𝑧3 as an extra parameter, the sense of which will
become clear after Definition 3.1.

We will call such an 𝑁 - tuple 𝜆 an admissible top row corresponding to the pair
(𝑛,𝑚).

Suppose we have two such 𝑁 - tuples 𝜆 and 𝜇 that are admissible top rows
corresponding to pairs (𝑛,𝑚) and (𝑛− 1,𝑚) respectively.

We will say that 𝜆 and 𝜇 interlace and write 𝜇 ≺ 𝜆 if their parameters 𝑧𝑖 coincide
and the following condition is fulfilled

𝜆′
1 ≥ 𝜇′

1 ≥ 𝜆′
2 ≥ . . . ≥ 𝜆′

𝑛−1 ≥ 𝜇′
𝑛−1 ≥ 𝜆′

𝑛

𝜇′
𝑛 ≥ 𝜆′

𝑛+1 ≥ 𝜇′
𝑛+1 ≥ . . . ≥ 𝜇′

𝑚−1 ≥ 𝜆′
𝑚 ≥ 𝜇′

𝑚

𝜆′
𝑚+1 ≥ 𝜇′

𝑚+1 ≥ 𝜆′
𝑚+2 ≥ . . . ≥ 𝜆′

𝑁−1 ≥ 𝜇′
𝑁−1 ≥ 𝜆′

𝑁

Further we will consider triangular tableaux of Gelfand-Tsetlin type, which are
associated to an admissible top row 𝜆. Rows and coloumns in such tableaux are
indexed as in the finite-dimensional case.

Definition 3.1. Suppose that 𝜆 is an admissible top row corresponding to the pair
(𝑛,𝑚). We will say that the triangular tableau with complex numbers and the top
row 𝜆 is a modified Gelfand-Tsetlin tableau iff every two rows in such tableau are
interlacing.

In the case 𝑛 = 𝑚 we suppose that all numbers in the third part of the tableau
are equal modulo 1 to each other. We will denote this residue by 𝑧3.
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Figure 1. Modified Gelfand-Tsetlin tableau
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Note that, inside the first, second and the third parts of the tableau standard
Gelfand-Tsetlin inequalities will hold for the real part of tableau’s elements, but
there is no links between different parts of the tableau (see Figure 1).

Denote by 𝑆𝜆 the set of all modified Gelfand-Tsetlin tableaux with the fixed
admissible top row 𝜆.

Consider the countable-dimensional vector space 𝑉𝜆 = span (𝜉Λ | Λ ∈ 𝑆𝜆).
In the space 𝑉𝜆, we define the action of the algebra 𝑈𝑞(gl𝑁) on the basis of modified

G-T tableaux by formulas (2.1), (2.2). It is assumed that coefficients 𝑎𝑗,𝑘 and 𝑏𝑗,𝑘 in
formulas (2.1), (2.2) are zero by definition if Λ± 𝜀𝑗(𝑘) is not an admissible tableau.

The denominators of coefficients in formulas (2.2) do not vanish due to the con-
dition (3.1).

Theorem 3.2. Suppose that 𝜆 is an admissible top row. Then formulas (2.1), (2.2)
define a representation of 𝑈𝑞(gl𝑁) on 𝑉𝜆.

Remark 3.3. Apparently, representations of such a type were firstly obtained in
the work [5]. It was done using some intuition from representation theory of infinite-
dimensional classical groups. Representations in the present paper can be considered
as their natural 𝑞 - analogs.

Note that, a much more general construction of 𝑈𝑞(gl𝑁) modules was obtained in
the paper [1], but authors did not study unitarazibility of such representations.

Proof. We will fix 𝜆′ = (𝜆′
1, . . . , 𝜆

′
𝑁) and vary parameters 𝑧1, 𝑧2, 𝑧3. Let 𝑅 be a

noncommutative polynomial in the generators, which vanishes in 𝑈𝑞(gl𝑁). Apply
𝑅 to some basis vector 𝜉Λ, corresponding to the tableau Λ ∈ 𝑆𝜆. We get a linear
combination of basis vectors with coefficients that are rational functions in two
variables 𝑞𝑧1−𝑧3 и 𝑞𝑧3−𝑧2 . We will show that all such coefficients, in fact, vanish.

We introduce the following notation: 𝑡1 = 𝑧1 − 𝑧3, 𝑡2 = 𝑧3 − 𝑧2

𝛾+ =
{︀

(𝑡1, 𝑡2) ∈ Z2|𝑡1 ≥ 𝜆𝑛+1 − 𝜆𝑛, 𝑡2 ≥ 𝜆𝑚+1 − 𝜆𝑚

}︀
Denote one of such coefficients by 𝐶 (𝑞𝑡1 , 𝑞𝑡2), where 𝐶(𝑥, 𝑦) is a rational function.
Note that, the top row of tableaux is the highest weight of a finite-dimensional

representation for all (𝑡1, 𝑡2) ∈ 𝛾+. Moreover, if values 𝑡1, 𝑡2 increase inside of 𝛾+,
then such finite-dimensional representation is growing and contain more and more
tableaux from 𝑉𝜆.

Therefore, for sufficiently large values (𝑡1, 𝑡2) ∈ 𝛾+, the formulas for the action of
𝑅 on the 𝜉Λ in such finite-dimensional representation are the same as (2.1), (2.2).

Denote the set of all such (𝑡1, 𝑡2) by the symbol 𝛾+
Λ . Then for all (𝑡1, 𝑡2) ∈ 𝛾+

Λ we
have 𝐶 (𝑞𝑡1 , 𝑞𝑡2) = 0.

It is clear, that 𝛾+
Λ contains a two-dimensional Z≥0 - lattice. Therefore, 𝐶 (𝑞𝑡1 , 𝑞𝑡2)

is identically zero. �

The representation afforded by Theorem 3.2 will be denoted by 𝑇𝜆.
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4. Unitarizable representations of 𝑈𝑞(u(𝑚,𝑛))

The main aim of this section is to introduce three series of unitarizable represen-
tations of 𝑈𝑞(u(𝑚,𝑛)) of the form 𝑇𝜆.

There is an involution * on the algebra 𝑈𝑞(gl𝑁), which endows it with the structure
of a * - algebra.

This involution is defined on the generators as follows

𝐾*
𝑖 = 𝐾𝑖, 𝐸*

𝑖 = (−1)𝛿𝑚,𝑖𝐹𝑖, 𝐹 *
𝑖 = (−1)𝛿𝑚,𝑖𝐸𝑖,

where 𝛿𝑚,𝑖 is the Kronecker delta.

Definition 4.1. The algebra 𝑈𝑞(u(𝑚,𝑛)) is the * - algebra (𝑈𝑞(gl𝑁), *), where * is
defined as above.

Definition 4.2. A representation 𝑇 of the algebra 𝑈𝑞(gl𝑁) on the space 𝑉 is called
u(𝑚,𝑛) unitarizable, if it is equivalent to a * - representation of 𝑈𝑞(u(𝑚,𝑛)). More
precisely, there is an Hermitian scalar product in the space 𝑉 , such that

(𝑇 (𝑎)𝑣1, 𝑣2) = (𝑣1, 𝑇 (𝑎*)𝑣2), ∀𝑎 ∈ 𝑈𝑞(gl𝑁), ∀𝑣1, 𝑣2 ∈ 𝑉. (4.1)

It is assumed that the Hermitian scalar product is linear with respect to the first
argument and antilinear in the second one.

Now we focus only on unitarizable representations of 𝑈𝑞(u(𝑚,𝑛)) of the form 𝑇𝜆.
Consider a representation 𝑇𝜆 and define a scalar product on 𝑉𝜆 in the following

way
(𝜉Λ, 𝜉Λ) = 𝐻(Λ), ∀Λ ∈ 𝑆𝜆,

where 𝐻(·) is a strictly positive function on the set of modified Gelfand-Tsetlin
tableaux with the top row is equal to 𝜆.

Suppose that (·, ·) is 𝑈𝑞(u(𝑚,𝑛)) - invariant in the sense of the definition above.
Then we immediately conclude that

𝐻(Λ + 𝜀𝑗(𝑘))

𝐻(Λ)
= (−1)𝛿𝑚,𝑘

𝑏𝑗,𝑘(Λ + 𝜀𝑗(𝑘))

𝑎𝑗,𝑘(Λ)
= (−1)𝛿𝑚,𝑘

𝑏𝑗,𝑘(Λ + 𝜀𝑗(𝑘))

𝑎𝑗,𝑘(Λ)
, (4.2)

for all Λ ∈ 𝑆𝜆 such that Λ + 𝜀𝑗(𝑘) ∈ 𝑆𝜆.
Note that, the strict positivity of the right hand side of the equality (4.2) and

the existence of a solution of this reccurence relations are sufficient conditions for
unitarazibility of the representation 𝑇𝜆.

We need to introduce some notation. Define the following expression for all mod-
ified G-T tableaux Λ.

𝑁(Λ) =
𝑁∏︁
𝑘=2

(︃ ∏︁
1≤𝑖<𝑗≤𝑘

Γ𝑞(𝑙𝑖,𝑘 − 𝑙𝑗,𝑘)

Γ𝑞(𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘)

∏︁
1≤𝑖≤𝑗≤𝑘−1

Γ𝑞(𝑙𝑖,𝑘 − 𝑙𝑗,𝑘−1 + 1)

Γ𝑞(𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘−1 + 1)

)︃
, (4.3)

where Γ𝑞 is the 𝑞 - gamma function which is defined as follows [4]:

Γ𝑞(𝑧) = 𝑞−
(𝑧−1)(𝑧−2)

2 (1 − 𝑞2)1−𝑧 (𝑞2; 𝑞2)∞
(𝑞2𝑧; 𝑞2)∞

,

where (𝑎; 𝑞)∞ =
∞∏︀
𝑗=1

(1 − 𝑎𝑞𝑗−1) is the Pochhammer’s symbol.

The 𝑞 - gamma function satisfies the functional equation

Γ𝑞(𝑧 + 1) = [𝑧]Γ𝑞(𝑧)

Remark 4.3. The expression (4.3) satisfies the following identity
𝑁(Λ + 𝜀𝑗(𝑘))

𝑁(Λ)
=

𝑏𝑗,𝑘(Λ + 𝜀𝑗(𝑘))

𝑎𝑗,𝑘(Λ)
. (4.4)
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Now we are ready to give an explicit construction of three series of unitarizable
𝑈𝑞(u(𝑚,𝑛)) modules.

Suppose that we have a set of real numbers 𝜆 ∈ R𝑁 that satisfy the following
conditions

∙ 𝜆𝑖 − 𝜆𝑖+1 ∈ Z≥0 for all 𝑖 ̸= 𝑛,𝑚

∙ 𝜆1 − 𝜆𝑁 /∈ Z
(4.5)

We set
𝜆0 = (𝜆1+𝑖𝑡0, 𝜆2+𝑖𝑡0, . . . , 𝜆𝑛+𝑖𝑡0;𝜆𝑛+1, . . . , 𝜆𝑚;𝜆𝑚+1−𝑖𝑡0, 𝜆𝑚+2−𝑖𝑡0, . . . , 𝜆𝑁−𝑖𝑡0),

where 𝑡0 = 𝜋𝑖
ln 𝑞

.
Then 𝜆0 is an admissible top row corresponding to the pair (𝑛,𝑚). We denote

the representation 𝑇𝜆0 by 𝑇 𝑠
𝜆 .

Proposition 4.4. If 𝑛 = 1, then the representation 𝑇 𝑠
𝜆 of the agebra 𝑈𝑞(u(𝑚,𝑛)) is

unitarizable.
For 𝑛 ≥ 2 we have the following sufficient condition for 𝑇 𝑠

𝜆 to be unitarizable

𝑚 > 𝜆𝑚+1 − 𝜆𝑛 + 𝑛− 2 (4.6)

Remark 4.5. In the case 𝑛 ≥ 2 and 𝜆1 = 𝜆2 = . . . = 𝜆𝑛, 𝜆𝑚+1 = 𝜆𝑚+2 = . . . = 𝜆𝑁

the sufficient condition above is not necessary and the representation 𝑇 𝑠
𝜆 will be

unitarizable for all admissible values of parametres 𝜆 that satisfy (4.5).

Remark 4.6. Representations 𝑇 𝑠
𝜆 disappear in the classical limit 𝑞 → 1.

Proof. In this proof we denote elements of Λ = Re (Λ0) by 𝜆𝑗,𝑘 for Λ0 ∈ 𝑆𝜆0 .
Coefficients in formulas 2.2 for such representations we denote by 𝑎𝑠𝑗,𝑘(Λ) and

𝑏𝑠𝑗,𝑘(Λ).
Note that, 𝑎𝑠𝑗,𝑘(Λ) = 𝑎𝑗,𝑘(Λ) for 𝑘 ≤ 𝑚− 1 and 𝑏𝑠𝑗,𝑘(Λ) = 𝑏𝑗,𝑘(Λ) for 𝑘 ≤ 𝑚.
For all 𝑥 ∈ R the following equalities hold

[𝑥± 𝑡𝑖] = ±𝑖[𝑥]+, [𝑥± 2𝑡𝑖] = −[𝑥] (4.7)

Now it’s clear, that 𝑏𝑠𝑗,𝑘(Λ) ∈ R if the pair of indices (𝑗, 𝑘) lies in the third part of
the tableau and 𝑏𝑠𝑗,𝑘(Λ) ∈ 𝑖 · R if the pair (𝑗, 𝑘) lies in the first or in the second part
of the tableau.

Then we set
𝐻(Λ) =

∏︁
(𝑖,𝑗)∈𝐼∪𝐼𝐼

(−1)𝜆𝑖,𝑗 · (−1)
∑︀𝑚

𝑖=1 𝜆𝑖,𝑚 ·𝑁(Λ0)

We need explicit expressions of coefficients 𝑎𝑠𝑗,𝑘(Λ) and 𝑏𝑠𝑗,𝑘(Λ). They are as follows

𝑎𝑠𝑗,𝑚(Λ) = −[𝑙1,𝑚+1 − 𝑙𝑗,𝑚]+[𝑙𝑚+1,𝑚+1 − 𝑙𝑗,𝑚]+

𝑚∏︀
𝑖=2

[𝑙𝑖,𝑚+1 − 𝑙𝑗,𝑚]

𝑚∏︀
𝑖=1,𝑖 ̸=𝑗

[𝑙𝑖,𝑚 − 𝑙𝑗,𝑚]
(4.8)

𝑎𝑠𝑗,𝑘(Λ) = −

∏︀
𝑖:(𝑖,𝑘+1)∈𝐼∪𝐼𝐼

[𝑙𝑖,𝑘+1 − 𝑙𝑗,𝑘]+∏︀
𝑖:(𝑖,𝑘)∈𝐼∪𝐼𝐼

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]+

∏︀
𝑖:(𝑖,𝑘+1)∈𝐼𝐼𝐼

[𝑙𝑖,𝑘+1 − 𝑙𝑗,𝑘]∏︀
𝑖:(𝑖,𝑘)∈𝐼𝐼𝐼

𝑖 ̸=𝑗

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]
, (4.9)

if (𝑗, 𝑘) ∈ 𝐼𝐼𝐼.

𝑎𝑠𝑗,𝑘(Λ) = ±𝑖 ·

∏︀
𝑖:(𝑖,𝑘+1)∈𝐼𝐼𝐼

[𝑙𝑖,𝑘+1 − 𝑙𝑗,𝑘]+∏︀
𝑖:(𝑖,𝑘)∈𝐼𝐼𝐼

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]+

∏︀
𝑖:(𝑖,𝑘+1)∈𝐼∪𝐼𝐼

[𝑙𝑖,𝑘+1 − 𝑙𝑗,𝑘]∏︀
𝑖:(𝑖,𝑘)∈𝐼∪𝐼𝐼

𝑖 ̸=𝑗

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]
, (4.10)
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if (𝑗, 𝑘) ∈ 𝐼 ∪ 𝐼𝐼.
In the last expression the plus sign is taken if (𝑗, 𝑘) ∈ 𝐼, and minus sign is taken

if (𝑗, 𝑘) ∈ 𝐼𝐼.

𝑏𝑠𝑗,𝑚+1(Λ) =
1

[𝑙1,𝑚+1 − 𝑙𝑗,𝑚+1]+[𝑙𝑚+1,𝑚+1 − 𝑙𝑗,𝑚+1]+
·

𝑚∏︀
𝑖=1

[𝑙𝑖,𝑚 − 𝑙𝑗,𝑚+1]

𝑚∏︀
𝑖=2
𝑖̸=𝑗

[𝑙𝑖,𝑚+1 − 𝑙𝑗,𝑚+1]
, (4.11)

if (𝑗,𝑚 + 1) ∈ 𝐼𝐼𝐼.

𝑏𝑠1,𝑚+1(Λ) = 𝑖 · 1

[𝑙𝑚+1,𝑚+1 − 𝑙1,𝑚+1]

𝑚∏︀
𝑖=1

[𝑙𝑖,𝑚 − 𝑙1,𝑚+1]+

𝑚∏︀
𝑖=2

[𝑙𝑖,𝑚+1 − 𝑙1,𝑚+1]+

(4.12)

𝑏𝑠𝑚+1,𝑚+1(Λ) = −𝑖 · 1

[𝑙1,𝑚+1 − 𝑙𝑚+1,𝑚+1]

𝑚∏︀
𝑖=1

[𝑙𝑖,𝑚 − 𝑙𝑚+1,𝑚+1]+

𝑚∏︀
𝑖=2

[𝑙𝑖,𝑚+1 − 𝑙𝑚+1,𝑚+1]+

(4.13)

𝑏𝑠𝑗,𝑘(Λ) =

∏︀
𝑖:(𝑖,𝑘−1)∈𝐼∪𝐼𝐼

[𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘]+∏︀
𝑖:(𝑖,𝑘)∈𝐼∪𝐼𝐼

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]+

∏︀
𝑖:(𝑖,𝑘−1)∈𝐼𝐼𝐼

[𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘]∏︀
𝑖:(𝑖,𝑘)∈𝐼𝐼𝐼

𝑖 ̸=𝑗

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]
, (4.14)

if (𝑗, 𝑘) ∈ 𝐼𝐼𝐼.

𝑏𝑠𝑗,𝑘(Λ) = ±𝑖 ·

∏︀
𝑖:(𝑖,𝑘−1)∈𝐼𝐼𝐼

[𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘]+∏︀
𝑖:(𝑖,𝑘)∈𝐼𝐼𝐼

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]+

∏︀
𝑖:(𝑖,𝑘−1)∈𝐼∪𝐼𝐼

[𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘]∏︀
𝑖:(𝑖,𝑘)∈𝐼∪𝐼𝐼

𝑖 ̸=𝑗

[𝑙𝑖,𝑘 − 𝑙𝑗,𝑘]
, (4.15)

if (𝑗, 𝑘) ∈ 𝐼 ∪ 𝐼𝐼.
The rule for signs is the same as for (4.10).
Now we show that the condition (4.6) is sufficient for the following inequality to

be fulfilled

∀Λ0 ∈ 𝑆𝜆0 : Λ0 + 𝜀𝑗(𝑘) ∈ 𝑆𝜆0 (−1)𝛿𝑚,𝑘
𝑏𝑠𝑗,𝑘(Λ + 𝜀𝑗(𝑘))

𝑎𝑠𝑗,𝑘(Λ)
> 0 (4.16)

Note that, this inequality holds for 𝑘 ≤ 𝑚 because of standard Gelfand-Tsetlin
inequalities for elements of the third part of tableaux. Moreover, it is easy to prove,
that this inequality is satisfied for 𝑘 ≥ 𝑚 + 1, (𝑗, 𝑘) ∈ 𝐼𝐼𝐼.

It is clear, that if 𝑛 = 1, then 𝑇 𝑠
𝜆 is unitarizable for all admissible values of

parameter 𝜆, and the statement from the remark 4.5 is fulfilled.
We see that the property of 𝑇 𝑠

𝜆 to be unitarizable does not depend on the third
part of the tableaux at all.

From (4.16) we have the following conditions which we need to verify.
𝑘−1∏︀

𝑖=𝑚+1

(𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘 − 1)
𝑘+1∏︀

𝑖=𝑚+1

(𝑙𝑖,𝑘+1 − 𝑙𝑗,𝑘)

𝑘∏︀
𝑖=𝑚+1

(𝑙𝑖,𝑘 − 𝑙𝑗,𝑘 − 1)(𝑙𝑖,𝑘 − 𝑙𝑗,𝑘)

> 0, (4.17)

for 𝑘 ≥ 𝑚 + 2 and 𝑗 = 1, 𝑘 −𝑚.
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𝑘−𝑚−1∏︀
𝑖=1

(𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘 − 1)
𝑘−𝑚+1∏︀
𝑖=1

(𝑙𝑖,𝑘+1 − 𝑙𝑗,𝑘)

𝑘−𝑚∏︀
𝑖=1

(𝑙𝑖,𝑘 − 𝑙𝑗,𝑘 − 1)(𝑙𝑖,𝑘 − 𝑙𝑗,𝑘)

> 0, (4.18)

for 𝑘 ≥ 𝑚 + 2 and 𝑗 = 𝑚 + 1, 𝑘.
(𝑙𝑚+1,𝑚+1 − 𝑙1,𝑚+1)(𝑙𝑚+1,𝑚+1 − 𝑙1,𝑚+1 − 1)·
(𝑙𝑚+1,𝑚+2 − 𝑙1,𝑚+1)(𝑙𝑚+2,𝑚+2 − 𝑙1,𝑚+1) > 0,

(4.19)

for (𝑗, 𝑘) = (1,𝑚 + 1).
(𝑙1,𝑚+1 − 𝑙𝑚+1,𝑚+1)(𝑙1,𝑚+1 − 𝑙𝑚+1,𝑚+1 − 1)·
(𝑙1,𝑚+2 − 𝑙𝑚+1,𝑚+1)(𝑙2,𝑚+2 − 𝑙𝑚+1,𝑚+1) > 0,

(4.20)

for (𝑗, 𝑘) = (𝑚 + 1,𝑚 + 1).
Now we check that the condition 𝑚 > 𝜆𝑚+1 − 𝜆𝑛 + 𝑛 − 2 is suffucient for

(4.17),(4.18),(4.19),(4.20) to be satisfied for 𝑛 ≥ 2.
For (4.19) we need the following inequalities

𝑙1,𝑚+1 ≥ 𝜆𝑛 − 1, 𝑙𝑚+1,𝑚+1 ≤ 𝜆𝑚+1 −𝑚− 1

We immediately get

𝑙𝑚+1,𝑚+1 − 𝑙1,𝑚+1 ≤ 𝜆𝑚+1 − 𝜆𝑛 −𝑚−𝑚 < 2 − 𝑛 ≤ 0

We alse have, 𝑙𝑚+1,𝑚+1 − 𝑙1,𝑚+1 − 1 < 0. Then we proceed similarly with the
remaining two factors in (4.19) and show that each of them is negative. We are
done with (4.19).

For (4.20) we need the following
𝑙1,𝑚+1−𝑙𝑚+1,𝑚+1 − 1 ≥ 𝜆𝑛 − 1 − (𝜆𝑚+1 − 1) + 𝑚 + 1 − 1 =

= 𝜆𝑛 − 𝜆𝑚+1 + 𝑚 > 𝑛− 2 ≥ 0,
(4.21)

𝑙2,𝑚+2−𝑙𝑚+1,𝑚+1 ≥ 𝜆𝑛 − 2 − (𝜆𝑚+1 − 1) + 𝑚 + 1 =

= 𝜆𝑛 − 𝜆𝑚+1 + 𝑚 > 𝑛− 2 ≥ 0
(4.22)

For (4.17) we use
𝑙𝑖,𝑘 − 𝑙𝑗,𝑘 ≤ 𝜆𝑚+1 − 𝑖− 𝜆𝑛 + 𝑗 < 𝑚− 𝑛− 2 − 𝑖 + 𝑗 ≤

≤ 𝑚− 𝑛− 2 − (𝑚 + 1) + 𝑘 −𝑚 = 𝑘 −𝑚− 𝑛− 3 < 0,
(4.23)

𝑙𝑖,𝑘+1 − 𝑙𝑗,𝑘 ≤ 𝜆𝑚+1 − 𝑖− 𝜆𝑛 + 𝑗 < 0, (4.24)
𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘 − 1 ≤ 𝜆𝑚+1 − 𝑖− 𝜆𝑛 + 𝑗 − 1 < 0 (4.25)

And for (4.18) we use
𝑙𝑖,𝑘 − 𝑙𝑗,𝑘 − 1 ≥ 𝜆𝑛 − 𝑖− (𝜆𝑚+1 − 1) + 𝑗 − 1 = 𝜆𝑛 − 𝜆𝑚+1 − 𝑖 + 𝑗 >

> 𝑛− 2 −𝑚− 𝑖 + 𝑗 > 𝑘 −𝑚 + 𝑛− 1 ≥ 𝑚 + 2 −𝑚 + 𝑛− 1 = 𝑛 + 1 > 0
(4.26)

𝑙𝑖,𝑘+1 − 𝑙𝑗,𝑘 ≥ 𝜆𝑛 − 𝑖− (𝜆𝑚+1 − 1) + 𝑗 > 0 (4.27)
𝑙𝑖,𝑘−1 − 𝑙𝑗,𝑘 − 1 ≥ 𝜆𝑛 − 𝑖− (𝜆𝑚+1 − 1) + 𝑗 − 1 > 0 (4.28)

Now we are done with it and we are going to show that such representations do
not sustain passage to the limit as 𝑞 → 1.

To do that, we use the orthonormal basis 𝜉′Λ = 𝜉Λ√
𝐻(Λ)

and we look at the coefficient(︀
𝐸𝑚𝜉

′
Λ, 𝜉

′
Λ+𝜀𝑗(𝑚)

)︀
= −

√︁
−𝑎𝑠𝑗,𝑚(Λ)𝑏𝑠𝑗,𝑚(Λ + 𝜀𝑗(𝑚))

It is easy to see from (4.8) that the expression from the right hand side of the
equality does not have the classical limit. �
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Consider the second family of unitarizable representations.
Let us fix two non-negative integers 𝑘, 𝑙 such that 𝑚 ≥ 2𝑛 + 𝑘 + 𝑙. Suppose that

𝜆 is an admissible top row corresponding to the pair (𝑛,𝑚), which is of the form

𝜆 = (𝜆1, . . . , 𝜆𝑛;𝜆𝑛+1, . . . , 𝜆𝑛+𝑘, 0, . . . , 0, 𝜆𝑚−𝑙+1, . . . , 𝜆𝑚;𝜆𝑚+1, . . . , 𝜆𝑁) ∈ R𝑁

The representation 𝑇𝜆 we denote by 𝑇 𝑐
𝜆.

Proposition 4.7. If the following conditions for 𝜆 are satisfied

−𝜆1 > 𝑛 + 𝑘 − 1, 𝜆𝑁 > 𝑛 + 𝑙 − 1, (4.29)
𝑚 > 𝜆𝑚+1 − 𝜆𝑛 + 𝑛− 2, (4.30)

then 𝑇 𝑐
𝜆 is a unitarizable representation.

Moreover, in the case 𝜆1 = 𝜆2 = . . . = 𝜆𝑛, 𝜆𝑚+1 = 𝜆𝑚+2 = . . . = 𝜆𝑁 conditions
(4.29), (4.29) are not necessary. In this case we have a weaker sufficient conditions

−𝜆𝑛 < 𝑚− 𝑛− 𝑙 + 1, 𝜆𝑚+1 < 𝑚− 𝑛− 𝑘 + 1 (4.31)

Remark 4.8. If 𝑛 = 1, we can drop the condition 𝑚 ≥ 2𝑛 + 𝑘 + 𝑙 and require the
fulfillment of (4.29) and (4.31). Then 𝑇 𝑐

𝜆 is a unitarizable representation.

Remark 4.9. Representations from Proposition 4.7 can be considered as 𝑞 - analogs
of representations from the paper [5]. All sufficient conditions for quantized case are
absolutely the same as for the classical one.

Now we describe the third series of unitarizable representations of 𝑈𝑞(u(𝑚,𝑛)).
Consider an admissible top row 𝜆 corresponding to the pair (𝑛,𝑚) which is of the

following form
𝜆 = (𝑎 + 𝑥𝑖, . . . , 𝑎 + 𝑥𝑖;𝜆𝑛, . . . , 𝜆𝑚; 𝑎 + 𝑚− 𝑥𝑖, . . . , 𝑎 + 𝑚− 𝑥𝑖),

where 𝜆𝑛, . . . , 𝜆𝑚 ∈ R, 𝑎 ∈ R, 𝑥 ∈
(︁

0;− 𝜋
ln 𝑞

)︁
, 𝑥 ̸= − 𝜋

2 ln 𝑞
.

The representation 𝑇𝜆 we denote by 𝑇 𝑝
𝜆 .

Proposition 4.10. The representation 𝑇 𝑝
𝜆 is unitarizable.

Proof. Note that, coefficients 𝑎𝑗,𝑘(Λ) and 𝑏𝑗,𝑘(Λ) for such representation are products
of factors of the form

[𝑦 + 𝑖𝑥][𝑦 − 𝑖𝑥] = [𝑦]2 +
4 sin2(𝑥 ln 𝑞)

(𝑞 − 𝑞−1)2
> 0

for some 𝑦 ∈ R.
It follows that 𝑏𝑗,𝑘(Λ) = 𝑏𝑗,𝑘(Λ). Then it is easy to see that the desired inequality

for the right hand side of (4.2) holds. �



13

5. Some properties of representations 𝑇𝜆

In this section we will show some properties of representations 𝑇𝜆, including their
irreducibility and we will see that 𝑇 𝑐

𝜆, 𝑇 𝑠
𝜆 and 𝑇 𝑝

𝜆 are pairwise non-equivalent for
different values of parameters.

Example 5.1. Consider the representation 𝑇𝜆 of the algebra 𝑈𝑞(𝑔𝑙2). The top row
𝜆 is of the following form 𝜆 = (𝑎 + 𝑥𝑖; 𝑎 + 1 − 𝑥𝑖), where 𝑎 ∈ R∖Z, 𝑥 /∈ 𝜋

2 ln 𝑞
Z.

Parameter 𝑧3 is equal to zero (3.1).
The action of 𝑈𝑞(𝑔𝑙2) is determined by the formulas

𝐾1𝜉Λ = 𝑞𝜆1,1 , 𝐾2𝜉Λ = 𝑞2𝑎+1−𝜆1,1 (5.1)
𝐸1𝜉Λ = −[𝑎− 𝜆1,1 + 𝑥𝑖][𝑎− 𝜆1,1 − 𝑥𝑖]𝜉Λ+𝜀1(1), 𝐹1𝜉Λ = 𝜉Λ−𝜀1(1) (5.2)

It is clear that these formulas are invariant under the transformation 𝑥 → −𝑥.
Moreover, the eigenvalues of elements from the Cartan subalgeba C

[︀
𝐾±

1 , 𝐾
±
2

]︀
do

not depend on 𝑥 at all. But the quadratic Casimir

𝐶 = 𝐸1𝐹1 +
𝑞−1𝐾1𝐾

−1
2 + 𝑞𝐾−1

1 𝐾2

(𝑞 − 𝑞−1)2
− 2 = 𝐹1𝐸1 +

𝑞𝐾1𝐾
−1
2 + 𝑞−1𝐾−1

1 𝐾2

(𝑞 − 𝑞−1)2
− 2

acts in such representation as multiplication by a constant which is equal to [𝑥𝑖]2.
This implies that such representations could not be equivalent for all values of 𝑥.

The action of Cartan subalgebra does not separate such representations into
equivalence classes, but some other commutative subalgebra of 𝑈𝑞(gl2) does that:
Γ2
𝑞 = ⟨𝐾1, 𝐾2, 𝐶⟩ = ⟨𝑍1, 𝑍2⟩, where we denote the center of 𝑈𝑞(gl𝑖) by 𝑍𝑖 . The

situation is a little bit similar in the general case for representations 𝑇𝜆.

Let 𝑍𝑁 denote the center of 𝑈𝑞(gl𝑁). The algebra 𝑍𝑁 is finitely generated by
some special elements 𝑐𝑁,0, . . . , 𝑐𝑁,𝑁 [6, Theorem 14].

Consider the chain of algebras

𝑈𝑞(gl1) ⊂ 𝑈𝑞(gl2) ⊂ . . . ⊂ 𝑈𝑞(gl𝑁), (5.3)

where the inclusions are the same as was pointed in section 2.
By the very construction, Γ𝑁

𝑞 is a commutative subalgebra of 𝑈𝑞(gl𝑁) that is
generated by 𝑍1, . . . , 𝑍𝑁 . It is called the Gelfand-Tsetlin subalgebra.

Proposition 5.2. [2, Theorem 4.3] The action of Γ𝑁
𝑞 in the irreducible finite-

dimensional representation 𝐿(𝜆) is diagonizable in the basis of Gelfand-Tsetlin
tableaux:

𝑐𝑟,𝑠(𝜉Λ) = 𝛾𝑟,𝑠(Λ)𝜉Λ, for 𝑟 ≤ 𝑁, 0 ≤ 𝑠 ≤ 𝑟,

𝛾𝑟,𝑠(Λ) = 𝛾𝑟,𝑠 · 𝑞
−

𝑟∑︀
𝑖=1

𝑙𝑖,𝑠
𝑒𝑠
(︀
𝑞2𝑙1,𝑟 , 𝑞2𝑙2,𝑟 , . . . , 𝑞2𝑙𝑟,𝑟

)︀
, (5.4)

where 𝛾𝑟,𝑠 = [𝑠]![𝑟− 𝑠]!𝑞−𝑟2+(𝑟+1)𝑠 and 𝑒𝑠 are the elementary symmetric polinomials.

By analogy with the theorem 4.2 one can prove the following

Proposition 5.3. Suppose that 𝜆 is an admissible top row. Then the action of
Γ𝑁
𝑞 in the representation 𝑇𝜆 is diagonizable in the basis of modified Gelfand-Tsetlin

tableaux:
𝑇𝜆(𝑐𝑟,𝑠)(𝜉Λ) = 𝛾𝑟,𝑠(Λ)𝜉Λ, for 𝑟 ≤ 𝑁, 0 ≤ 𝑠 ≤ 𝑟.

Corollary 5.4. Representations from series 𝑇 𝑐
𝜆, 𝑇 𝑠

𝜆 and 𝑇 𝑝
𝜆 are pairwise non-

equivalent for different values of parameters.

Corollary 5.5. The action of Γ𝑁
𝑞 separates tableaux in the representation 𝑇𝜆. It

means that for every two modified G-T tableax there exists an element of Γ𝑁
𝑞 that

has non-equal eigenvalues on that tableaux.
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Proof. Suppose we have two tableaux Λ1,Λ2 ∈ 𝑆𝜆 such that 𝛾𝑟,𝑠(Λ1) = 𝛾𝑟,𝑠(Λ2) for all
𝑟 ≤ 𝑁, 0 ≤ 𝑠 ≤ 𝑟. Then by Proposition 5.3 we get that for all 𝑟 ≤ 𝑁 the collections(︁
𝑞2𝑙

1
1,𝑟 , 𝑞2𝑙

1
2,𝑟 , . . . , 𝑞2𝑙

1
𝑟,𝑟

)︁
and

(︁
𝑞2𝑙

2
1,𝑟 , 𝑞2𝑙

2
2,𝑟 , . . . , 𝑞2𝑙

2
𝑟,𝑟

)︁
differ by a permutation. That is

possible iff this permutation is the identity because of the condition 3.1. �

Lemma 5.6. Suppose that 𝜆 is an admissible top row and 𝑊 ⊂ 𝑉𝜆 is an invariant
subspace. If 𝑎1𝜉Λ1+, . . . , 𝑎1𝜉Λ𝑘

∈ 𝑊 for 𝑎1, . . . , 𝑎𝑘 ̸= 0, then 𝜉Λ1 , . . . , 𝜉Λ𝑘
∈ 𝑊 .

Proposition 5.7. Suppose that 𝜆 is an admissible top row. Then 𝑇𝜆 is an irreducible
representation.

Proof. If 𝑊 ⊂ 𝑉𝜆 is an invariant subspace, then it follows from Lemma 5.6 that
the corresponding subrepresentation is a direct summand of 𝑇𝜆. It is easy to see
that one can obtain every tableau from 𝑉𝜆 by increasing or decreasing the value of
elements in the tableau 𝜇 by an integer (see Figure 2).

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@

@
@
@

@

@
@
@

@
@
@

@
@

�
�
�
�
�
�
�
�𝜆1 𝜆2 . . . 𝜆𝑛−1 𝜆𝑛

𝜆1 𝜆2 . . . 𝜆𝑛−1

. . . . . . . . .
𝜆1 𝜆2

𝜆1

@@

@@

@@

@@

@@

@

𝜆𝑛+1 . . . 𝜆𝑚

𝜆𝑛+1 𝜆𝑛+1 . . . 𝜆𝑚

𝜆𝑛+1 𝜆𝑛+1 𝜆𝑛+1 . . . 𝜆𝑚

. . . . . . . . .

𝜆𝑛+1 . . . 𝜆𝑚

𝜆𝑛+1. . .𝜆𝑚−1
. . .
𝜆𝑛+1

···
𝜆𝑛+1

· · · · · · ·
𝜆𝑛+1

𝜆𝑛+1

𝜆𝑛+1

· · · · · · ·
𝜆𝑛+1

𝜆𝑛+1

···
𝜆𝑛+1

· · · · · · ·
𝜆𝑛+1

𝜆𝑛+1

· ·
·· ·

·

𝜆𝑚+1 𝜆𝑚+2 . . . 𝜆𝑁−1 𝜆𝑁

𝜆𝑚+1 𝜆𝑚+2 . . . 𝜆𝑁−1

. . . . . . . . .
𝜆𝑚+1𝜆𝑚+2

𝜆𝑚+1

𝜇 =

Figure 2

�

Corollary 5.8. The following branching law holds

Res𝑁𝑁−1 𝑇𝜆 =
⨁︁
𝜇≺𝜆

𝑇𝜇,
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