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Chapitre 1

Introduction en Français

Cette thèse porte sur les fonctions harmoniques semi-finies sur les graphes de branchement.

1.1 Fonctions harmoniques et graphes de branchement :
premier exemple

L’exemple le plus simple d’un graphe de branchement est celui du graphe de Pascal P, dont
l’ensemble des sommets est Z2

≥0. Deux sommets de P sont reliés par une arête si et seulement
si leurs premières coordonnées coïncident et que leurs deuxièmes coordonnées diffèrent de
un, ou vice versa. Ainsi, il n’y a que deux arêtes sortant de chaque sommet de P. Le graphe
de Pascal est étroitement lié à l’algèbre des polynômes à deux variables R[x,y]. En d’autres
termes, on peut dire que les sommets de P sont étiquetés par les éléments de base xnym et
que les arêtes reflètent la multiplication par x+ y :

(x+ y)xnym = xn+1ym + xnym+1.

Une fonction ϕ non-négative sur P est appelée harmonique, si

ϕ(n,m) = ϕ(n+ 1,m) +ϕ(n,m+ 1).

En d’autres termes, ϕ est cohérente avec le branchement de P. Une telle fonction ϕ definit
une forme liniaire non-négative (dans le sens où elle prend des valeurs non-négatives sur
la base xnym) sur R[x,y], qui s’annule sur l’idéal engendré par (x + y − 1) ⊂ R[x,y]. De plus,
les fonctions harmoniques indécomposables correspondent à des formes liniaires multipli-
catives, c’est-à-dire aux homomorphismes d’algèbres R[x,y]→R.

Les fonctions harmoniques finies sur le graphe de Pascal sont en correspondance bijec-
tive avec les mesures de probabilité sur l’intervalle unité fermé. Ce résultat est équivalent au
célèbre théorème de de Finetti. Cette équivalence découle du fait que les fonctions harmo-
niques finies sur P satisfaisant la condition ϕ(0,0) = 1 sont en correspondance bijective avec
les mesures de probabilité dites centrales sur l’espace des chemins de P, qui est l’espace des
séquences infinies composées de 0 et de 1. La condition de centralité signifie que la mesure
d’un cylindre ne dépend que du nombre de 0 et de 1 dans la partie initiale du chemin, mais
pas de leur position.

1.2 Travaux antérieurs et motivation

La motivation pour étudier les fonctions harmoniques semi-finies vient de la théorie des
algèbres d’opérateurs. La théorie classique des caractères des groupes finis et des groupes
compacts peut être généralisée à d’autres classes de groupes et d’algèbres de différentes
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manières. Pour les groupes et les C∗-algèbres qui ne sont pas de type I, la théorie des ca-
ractères n’est pas liée aux représentations irréductibles mais aux représentations factorielles
normales, c’est-à-dire aux homomorphismes d’algèbres de von Neumann avec une trace fi-
nie ou semi-finie. Pour les AF-algèbres, on peut reformuler la théorie des caractères dans
un langage combinatoire-algébrique grâce aux fonctions harmoniques non-négatives sur les
diagrammes de Bratteli. De manière équivalente, on peut traiter ces fonctions harmoniques
comme des mesures centrales sur l’espace des chemins monotones dans le graphe. Cette ap-
proche a été développée dans les travaux d’A. M. Vershik et S. V. Kerov à la fin des années 70
- début des années 80. Les fonctions harmoniques qui prennent uniquement des valeurs fi-
nies conduisent à des mesures de probabilité sur l’espace des chemins. Ces fonctions sont en
bijection avec les traces finies et correspondent aux représentations factorielles de type fini.
L’analogie avec les représentations factorielles de types I∞ et II∞ suggère d’étudier les fonc-
tions harmoniques dites semi-finies. La propriété de semi-finitude signifie que les fonctions
peuvent prendre la valeur +∞ et que ces valeurs infinies peuvent être approximées par des
valeurs finies. Les fonctions harmoniques semi-finis sont en bijection avec les traces semi-
finites inférieurement semi-continues sur des C∗-algèbres appropriées, voir le Théorème 1.9
et la Définition 1.8 de [4]. Ce fait montre que les fonctions harmoniques fournissent un
cadre combinatoire approprié pour l’étude des problèmes de classification des traces sur les
AF-algèbres.

A. M. Vershik et S. V. Kerov ont obtenu la classification des fonctions harmoniques semi-
finies sur les graphes de Young et de Kingman, [12, 9]. Ils ont résolu ce problème à l’aide
de la méthode ergodique, qui implique l’évaluation d’une limite hautement non triviale. En
principe, cette méthode peut être appliquée à n’importe quel graphe de branchement, mais
sa difficulté essentielle, qui n’est pas toujours facile à surmonter, est de calculer cette limite.
Il existe une autre approche développée par A. J. Wassermann. Dans sa thèse [31], il a sug-
géré d’utiliser une bijection entre les représentations factorielles fidèles d’une C∗-algèbre
primitive A et celles d’un idéal fermé bilatère arbitraire de A [31, p. 143, Théorème 7]. Il
existe un autre ingrédient important de la méthode de Wassermann [31, p.146, Théorème
8]. Cette méthode nécessite que le groupe de Grothendieck de la C∗-algèbre en question ad-
mette une structure d’anneau qui est un domaine intégral satisfaisant certaines contraintes
supplémentaires. A. Wassermann a appliqué sa méthode pour déterminer toutes les fonc-
tions harmoniques semi-finies indécomposables sur le graphe de Young et a prouvé le ré-
sultat de classification de Vershik et Kerov [12, 9] en évitant la méthode ergodique ou tout
autre calcul analytique compliqué.

1.3 Organisation de la thèse

Dans la section 3, nous développons une version combinatoire de la méthode de Wasser-
mann, que nous utiliserons dans les sections suivantes. Dans la section 4, nous décrivons les
fonctions harmoniques finies et semi-finies sur le produit direct de graphes de branchement
en termes de telles fonctions sur les facteurs. Dans la section 5, nous décrivons les fonctions
harmoniques semi-finies sur le graphe en zigzag et prouvons un analogue semi-fini du théo-
rème de l’anneau de Vershik-Kerov pour celui-ci.

1.4 Résultats principaux

1.4.1 Version combinatoire de la méthode de Wassermann

La méthode de Wassermann est basée sur cinq énoncés dont nous présentons des analogues
combinatoires ci-dessous, voir la Proposition 1.4.5, le Théorème 1.4.9, la Proposition 1.4.10,
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le Théorème 1.4.12 et la Proposition 1.4.13. Ces résultats seront utilisés dans les sections sui-
vantes. Les énoncés originaux sont formulés et démontrés à l’aide de la théorie des algèbres
d’opérateurs, tandis que nous les prouvons de manière purement combinatoire. Cela nous
permet de simplifier et de clarifier considérablement les démonstrations. De plus, nous tra-
vaillons avec une généralisation des diagrammes de Bratteli - nous considérons des graphes
de branchement avec des multiplicités formelles non-négatives sur les arêtes.

Définition 1.4.1. Par un graphe gradué, nous entendons une paire (Γ ,κ), où Γ est un en-
semble gradué Γ =

⊔
n≥0

Γn, Γn étant des ensembles finis et κ est une fonction Γ × Γ → R≥0, qui

satisfait aux contraintes suivantes :

1) si λ ∈ Γn et µ ∈ Γm, alors κ(λ,µ) = 0 pour tous m−n , 1.

2) pour tout sommet λ ∈ Γn, il existe µ ∈ Γn+1 tel que κ(λ,µ) , 0.

Les arêtes du graphe gradué (Γ ,κ) sont, par définition, des paires de sommets (λ,µ) avec
κ(λ,µ) > 0. Nous pouvons donc considérer κ(λ,µ) comme une multiplicité formelle de
l’arête.

Si λ ∈ Γn, alors le nombre n est unique. Nous le notons par |λ|. Nous écrivons λ↗ µ, si
|µ|− |λ| = 1 et κ(λ,µ) , 0. Dans ce cas, nous disons qu’il existe une arête de λ à µ de multiplicité
κ(λ,µ).

Soit µ,ν ∈ Γ et |ν| − |µ| = n ≥ 1. Alors l’expression suivante

dim(µ,ν) =
∑

λ0,...,λn∈Γ :
µ=λ0↗λ1↗...↗λn−1↗λn=ν

κ(λ0,λ1)κ(λ1,λ2) . . .κ(λn−1,λn).

représente le nombre pondéré de chemins de µ à ν. Par définition, nous avons également
dim(µ,µ) = 1 et dim(µ,ν) = 0 si ν ≱ µ.

Définition 1.4.2. Un graphe de branchement est défini comme un graphe gradué (Γ ,κ) qui
satisfait les conditions suivantes :

• Γ0 = � est un singleton,

• pour tout λ ∈ Γn avec n ≥ 1, il existe µ ∈ Γn−1 tel que µ↗ λ.

Soit Γ un graphe gradué.

Définition 1.4.3. Un sous-ensemble J ⊂ Γ est appelé un co-idéal si pour tous les sommets
λ ∈ J et µ ∈ Γ tels que µ < λ, on a µ ∈ J .

Définition 1.4.4. Un co-idéal J est appelé saturé si pour tout λ ∈ J , il existe un sommet µ ∈ J
tel que λ↗ µ. Un co-idéal saturé J est appelé primitif si pour tous les co-idéaux saturés J1
et J2 tels que J = J1 ∪ J2, on a J = J1 ou J = J2.

Soit Γ un graphe de branchement. L’espace des chemins infinis dans Γ commençant par �
sera noté T(Γ ). À chaque chemin τ = (�↗ λ1↗ λ2↗ . . .) ∈ T(Γ ), nous associons le co-idéal
saturé primitif Γτ =

⋃
n≥1
{λ ∈ Γ | λ ≤ λn}.

Proposition 1.4.5. 1) Un co-idéal saturé J d’un graphe gradué est primitif si et seulement
si pour tout couple de sommets λ1,λ2 ∈ J , on peut trouver un sommet µ ∈ J tel que
µ ≥ λ1,λ2.
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2) Tout co-idéal primitif saturé d’un graphe de branchement est de la forme J = Γτ pour
un certain chemin τ ∈ T(Γ ).

Définition 1.4.6. Un graphe gradué Γ est appelé primitif s’il est primitif en tant que co-
idéal, c’est-à-dire que pour tout couple de sommets λ1,λ2 ∈ Γ , il existe un sommet µ ∈ Γ tel
que µ ≥ λ1,λ2.

Définition 1.4.7. Soit (Γ ,κ) un graphe gradué. Une fonction ϕ : Γ → R≥0 ∪ +∞ est appelée
harmonique si elle vérifie la propriété suivante :

ϕ(λ) =
∑
µ:λ↗µ

κ(λ,µ)ϕ(µ), ∀λ ∈ Γ .

Nous convenons que

• x+ (+∞) = +∞, pour tout x ∈R,

• (+∞) + (+∞) = +∞,

• 0 · (+∞) = 0.

Le symbole K0(Γ ) désigne le R-espace vectoriel engendré par les sommets de Γ sujet aux
relations suivantes

λ =
∑
µ:λ↗µ

κ(λ,µ) ·µ, ∀λ ∈ Γ .

Le symbole K+
0 (Γ ) désigne le cône positif dans K0(Γ ), généré par les sommets de Γ , c’est-à-

dire K+
0 (Γ ) = span

R≥0
(λ | λ ∈ Γ ). L’ordre partiel, défini par le cône K+

0 (Γ ), est noté ≥K . Cela
signifie que a ≥K b ⇐⇒ a− b ∈ K+

0 (Γ ). Par exemple, si λ ≤ µ, alors λ ≥K dim(λ,µ) ·µ.
L’application R≥0-linéaire K+

0 (Γ ) → R≥0 ∪ +∞, définie par une fonction harmonique ϕ,
sera notée par le même symbole ϕ.

Définition 1.4.8. Une fonction harmonique ϕ est appelée semi-finie, si elle n’est pas finie et
l’application ϕ : K+

0 (Γ )→R≥0 ∪+∞ vérifie la propriété suivante

ϕ(a) = sup
b∈K+

0 (Γ ) : b≤Ka,
ϕ(b)<+∞

ϕ(b), ∀a ∈ K+
0 (Γ ).

(1.1)

L’ensemble de toutes les fonctions harmoniques indécomposables finies (non identique-
ment nulles) et semi-finies sur un graphe gradué Γ est noté Hex(Γ ). Le sous-ensemble de
Hex(Γ ) composé de fonctions strictement positives est noté H◦ex(Γ ).

Théorème 1.4.9. Soit I un idéal d’un graphe gradué Γ .

1) Il existe une correspondance bijective entre {ϕ ∈Hex(Γ ) : ϕ |I , 0} et Hex(I), définie par
les applications mutuellement inverses suivantes :

ResΓI : {ϕ ∈Hex(Γ ) : ϕ |I , 0} →Hex(I), ϕ 7→ ϕ
∣∣∣
I
,

ExtΓI : Hex(I)→ {ϕ ∈Hex(Γ ) : ϕ |I , 0} , ϕ(·) 7→ lim
N→∞

∑
µ∈I
|µ|=N

dim(·,µ)ϕ(µ).

2) Si Γ est un graphe gradué primitif, alors la bijection ci-dessus préserve strictement les
fonctions harmoniques strictement positives H◦ex (I)←→H◦ex (Γ ).
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Proposition 1.4.10. Soit Γ un graphe gradué. Si ϕ ∈ Hex(Γ ), alors le support supp(ϕ) :=
λ ∈ Γ | ϕ(λ) > 0 est un co-idéal primitif.

Définition 1.4.11. Un graphe de branchement Γ est appelé multiplicatif s’il existe une R-
algèbre associative graduée Z≥0, A =

⊕
n≥0

An, A0 = R, avec une base distinguée d’éléments

homogènes aλλ ∈ Γ qui satisfont les conditions suivantes :

1) degaλ = |λ|,

2) a� est l’élément identité dans A,

3) Pour â =
∑
ν∈Γ1

κ(�,ν)aν et tout sommet λ ∈ Γ , nous avons â · aλ =
∑

µ:λ↗µ
κ(λ,µ)aµ.

De plus, nous supposons que les constantes de structure de A par rapport à la base
{aλ}λ∈Γ sont non-négatives.

Théorème 1.4.12 (Théorème de non-existence de Wassermann). Soit Γ un graphe multipli-
catif. Si aλaµ , 0 pour tous les λ,µ ∈ Γ , alors le graphe Γ n’admet pas de fonctions harmo-
niques indécomposables strictement positives et semi-finies.

Proposition 1.4.13 (Lemme de Boyer). Soit Γ un graphe gradué et ϕ une fonction harmo-
nique sur ce graphe. Soit I ⊂ Γ un idéal et J = Γ \I le co-idéal correspondant et λ ∈ J un
sommet fixé. Supposons qu’il existe un sommet λ′ ∈ I et un nombre réel positif βλ tels que
ϕ(λ′) > 0 et que pour tout sommet η ∈ I situé à un niveau suffisamment élevé, l’inégalité
suivante soit vérifiée ∑

µ∈J
dim(λ,µ)κ(µ,η) ≥ βλdim(λ′,η).

Alors ϕ(λ) = +∞. Si de plus (1.1) est vérifiée pour a = λ′, alors elle l’est également pour
a = λ.

1.4.2 Produit direct de graphes ramifiés

Ici, nous décrivons les fonctions harmoniques finies et semi-finies sur le produit direct de
graphes de branchement en termes de telles fonctions sur les facteurs.

Définition 1.4.14. Par produit direct de graphes gradués (Γ1,κ1) et (Γ2,κ2), nous entendons
le graphe gradué (Γ1 × Γ2,κ1 ×κ2), où

(Γ1 × Γ2)k =
⊔
n,m≥0:
n+m=k

(Γ1)n × (Γ2)m

et

(κ1 ×κ2)
(
(λ1,µ1); (λ2,µ2)

)
=


κ1(λ1,λ2), si µ1 = µ2,

κ2(µ1,µ2), si λ1 = λ2,

0 sinon.

Exemple 1.4.15. Le triangle de Pascal est le produit direct de deux copies de Z≥0.

Nous notons par FHex(Γ ) l’ensemble de toutes les fonctions harmoniques finies norma-
lisées indécomposables sur un graphe de branchement Γ .

Théorème 1.4.16. Soient Γ1 et Γ2 des graphes de branchement et ϕ une fonction harmonique
finie normalisée indécomposable sur Γ1 × Γ2, c’est-à-dire ϕ ∈ FHex(Γ1 × Γ2). Alors un seul des
cas suivants peut se produire :

9



1) Il existe ϕ1 ∈ FHex(Γ1), ϕ2 ∈ FHex(Γ2) et des nombres réels positifs w1,w2 tels que
w1 +w2 = 1 et

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ). (1.2)

De plus, ces ϕ1, ϕ2, w1,w2 sont uniques.

2) Il existe ϕ1 ∈ FHex(Γ1) telle que

ϕ(λ,µ) =

0, si µ ,�,
ϕ1(λ), si µ = �.

(1.3)

3) Il existe ϕ2 ∈ FHex(Γ2) telle que

ϕ(λ,µ) =

0, si λ ,�,
ϕ2(µ), si λ = �.

(1.4)

De plus, chaque fonction harmonique sur Γ1×Γ2 de la forme 1), 2) ou 3) est indécomposable.

Remarque 1.4.17. On peut facilement voir que (1.3) et (1.4) sont des cas particuliers de (1.2)
correspondant à w2 = 0 et w1 = 0. Nous formulons le Théorème 1.4.16 sous cette forme pour
simplifier la comparaison avec le Théorème 1.4.18.

Théorème 1.4.18. Soient Γ1 et Γ2 des graphes gradués et ϕ ∈ Hex(Γ1 × Γ2), alors un seul des
cas suivants peut se produire :

1) Il existe ϕ1 ∈Hex(Γ1), ϕ2 ∈Hex(Γ2) et des nombres réels positifs w1,w2 avec w1 +w2 = 1
tels que

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ).

De plus, ces ϕ1 et ϕ2 sont définis de manière unique à une constante multiplicative
près.

2) Il existe ϕ1 ∈Hex(Γ1) et ν2 ∈ Γ2 tels que

ϕ(λ,µ) =


0, si µ ≰ ν2,

+∞, si µ < ν2,

ϕ1(λ), si µ = ν2.

3) Il existe ν1 ∈ Γ1 et ϕ2 ∈Hex(Γ2) tels que

ϕ(λ,µ) =


0, si λ ≰ ν1,

+∞, si λ < ν1,

ϕ2(µ), si λ = ν1.

De plus, chaque fonction harmonique sur Γ1×Γ2 de la forme 1), 2) ou 3) est finie ou semi-finie
et indécomposable.
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1.4.3 Le graphe en zigzag

Dans cette section, nous décrivons les fonctions harmoniques semi-finies sur le graphe en
zigzag et prouvons un analogue semi-fini du théorème de l’anneau de Vershik-Kerov pour
celui-ci.

Considérons les compositions (partitions ordonnées) de nombres naturels. Nous les iden-
tifions avec les diagrammes en ruban, qui sont des diagrammes de Young imbriqués connec-
tés écrits selon la convention française et ne contenant pas de blocs de boîtes de taille 2× 2.
Une composition λ = (λ1, . . . ,λl) est identifiée avec le diagramme de Young en ruban ayant
λi boîtes dans la i-ème lignes. Par exemple, la seule composition de 1 est identifiée avec □.
Le nombre de boîtes dans λ est égal à |λ| = λ1 + . . .+λl . Nous considérons les diagrammes de
Young en ruban comme des zigzags se déplaçant du coin supérieur gauche au coin inférieur
droit. Il existe une bijection entre les zigzags et les mots binaires.

Un mot binaire est un mot dans l’alphabet de deux symboles, + et −. Nous utiliserons les
conventions suivantes

n
+ = + . . .+︸︷︷︸

n

et n− = − . . .−︸︷︷︸
n

.

La bijection entre les zigzags et les mots binaires est la suivante. De gauche à droite,
nous lisons les symboles du mot binaire et ajoutons des cases au zigzag le plus simple □. Si
le symbole est +, nous ajoutons une case dans la direction horizontale vers la droite, et si le
symbole est −, nous ajoutons une case dans la direction verticale vers le bas. Par exemple,
le mot binaire −+ correspond au zigzag avec une case dans la première rangée et deux cases
dans la deuxième rangée. Le mot binaire correspondant à un zigzag λ sera noté bw(λ). Ainsi,
bw(□) est le mot binaire vide.

Chaque mot binaire peut être représenté de manière unique comme une réunion consé-
cutive de blocs avec des signes alternés. Par un bloc, nous entendons un uplet de symboles du

même signe. Par exemple, le mot +− 3
+ se divise en trois blocs, +, − et

3
+. Ainsi, un bloc peut

être positif ou négatif en fonction du signe des symboles. En ce qui concerne les zigzags, ces
blocs positifs et négatifs correspondent aux lignes et aux colonnes.

Par un cluster, nous entendons un symbole, + ou −, auquel est associée une multiplicité
positive formelle, qui peut être infinie. Nous disons qu’un cluster est infini, si sa multiplicité
est infinie, sinon nous disons que le cluster est fini. Un modèle est une collection ordonnée
de clusters alternés. De plus, nous supposons toujours qu’un modèle contient au moins un
cluster infini.

Définition 1.4.19. Un modèle est appelé fini, s’il ne contient pas de clusters finis, à l’excep-
tion de ceux qui ne sont pas extrémaux et dont les deux voisins sont des clusters infinis du
même signe. Un modèle qui n’est pas fini sera appelé semi-fini.

Soit t un modèle semi-fini. Par un cluster séparant de t, nous entendons un cluster d’un
seul symbole qui n’est pas un cluster extrémal de t et dont les deux voisins sont des clusters
infinis du même signe. Par le flanc zigzag de t, nous entendons un uplet de mots binaires dont
chaque élément est composé de clusters finis mais non séparants de t se tenant à proximité.
Le flanc zigzag sera noté fl(t).

Soit t un modèle semi-fini. Par une section de t, nous entendons une collection maximale
de clusters consécutifs formant un modèle fini. Remarquons que les mots du flanc zigzag de
t divisent t en sections.

Soit t un modèle arbitraire. Par tn, nous désignons le mot binaire qui est obtenu à partir
de t en remplaçant toutes les multiplicités infinies par le nombre naturel n. Alors le sous-
ensemble du graphe en zigzag Z(t) := {λ ∈ Z | bw(λ) < tn pour un certain n} consiste en tous
les zigzags (ou mots binaires) qui sont de la forme t.
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Définition 1.4.20. Posons J(t) =
⋃
r Z(r) pour un modèle semi-fini t, où la réunion est prise

sur tous les r obtenus à partir de t en supprimant un seul symbole d’un cluster correspon-
dant à un bloc d’un mot binaire du flanc zigzag fl(t).

Supposons que t ait k sections t1, . . . , tk. Supposons que fl(t) = (a0, . . . , ak) et que la partition
de t soit de la forme :

t = (a0, t1, a1, . . . , ak−1, tk , ak).

Si a0 ou ak est le mot binaire vide, nous l’ignorons dans tout ce qui suit.

Lemme 1.4.21. Si λ ∈ Z(t)\J(t), alors

bw(λ) = a0 ⊔ bw(λ(1))⊔ a1 ⊔ . . .⊔ bw(λ(k))⊔ ak

pour certains λ(i) ∈ Z(ti), qui sont alors uniques.

Définition 1.4.22. Par un modèle de croissance en zigzag semi-fini, nous entendons une paire
(t,w), où t est un gabarit semi-fini ayantm grappes infinies etw = (w1, . . . ,wm) est unm-uplet
de nombres réels positifs tels que w1 + . . .+wm = 1.

Soit (t,w) un modèle de croissance en zigzag semi-fini. La partition de t en sections nous
donne une partition de w

w = v1 ⊔ . . .⊔ vk ,
où chaque vi est un uplet de nombres réels provenant de w = (w1, . . . ,wm) correspondant aux
clusters infinis de ti .

Définition 1.4.23. Pour tout λ ∈ Z, nous définissons

ϕt,w(λ) =


Fλ(1)(v1) · . . . ·Fλ(k)(vk), si λ ∈ Z(t)\J(t),
+∞, si λ ∈ J(t),
0, si λ < Z(t).

où λ 7→ (λ(1), . . . ,λ(k)) est l’application donnée par le Lemme 1.4.21 et Fλ(i)(vi) est défini
comme suit :

Fµ(x1,x2, . . . ,xn) =
∑

x
|µ(1)|
1 x

|µ(2)|
2 . . .x

|µ(n)|
n , (1.5)

où la somme est prise sur les décompositions de µ en n zigzags µ(1), . . . ,µ(n) tels que µ(i) soit
une ligne, si le nombre xi ∈ {w1, . . . ,wm} correspond à un cluster positif de t, et µ(i) soit une
colonne, si xi correspond à un cluster négatif de t. Notons que certains de ces µ(i) peuvent
être vides.

Notous que l’expression (1.5) provient d’une application multiplicative QSym→R, voir
la Section 5.4.1 sur la construction de Kerov.

Théorème 1.4.24.

1) Pour tout modèle de croissance en zigzag semi-fini (t,w), la fonction ϕt,w est une fonction
harmonique semi-finie indécomposable sur Z.

2) Toute fonction harmonique semi-finie indécomposable sur Z est proportionnelle à ϕt,w
pour certains modèles de croissance en zigzag semi-finis (t,w).1

1Notous que l’ensemble des zéros de ϕt,w est toujours non vide. Cela est conforme au théorème de non-
existence de Wassermann en raison du fait que le graphe en zigzag est multiplicatif et que QSym ne contient
aucun diviseur de zéro, voir le Théorème 1.4.12.

12



3) Les fonctions ϕt,w sont distinctes pour des modèles de croissance en zigzag semi-finis
distincts (t,w).

Maintenant, nous aimerions formuler le théorème de l’anneau de Vershik-Kerov semi-
fini pour le graphe en zigzag. Pour cela, nous étendons nos fonctions harmoniques semi-
finis sur Z à span

R≥0
{Fλ | λ ∈ Z} ⊂ QSym, où {Fλ}λ∈Z sont les fonctions quasi-symétriques

fondamentales.

Théorème 1.4.25. Soit (t,w) un modèle de croissance en zigzag semi-fini. Pour tout µ ∈
Z(t)\J(t) et λ ∈ Z, nous avons

ϕt,w
(
FλFµ

)
= ϕw(Fλ)ϕt,w(Fµ),

où ϕw est la fonction harmonique finie sur Z définie par ϕw(λ) = Fλ(w), voir la formule (1.5)
ci-dessus.
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Chapter 2

Introduction in English

My PhD thesis concerns semifinite harmonic functions on branching graphs.

2.1 Harmonic functions and branching graphs: first exam-
ple

The simplest example of a branching graph is the Pascal graph P, which is Z2
≥0. Two vertices

of P are joined by an edge if and only if either their first coordinates coincide and the second
coordinates differ by one, or vice versa. So, there are only two edges going out of every vertex
of P. The Pascal graph is closely related to the algebra of polynomials in two variables
R[x,y]. Namely, one can say that the vertices of P are labelled by the basis elements xnym

and the edges reflect the multiplication by x+ y:

(x+ y)xnym = xn+1ym + xnym+1.

A non-negative function ϕ on P is called harmonic, if

ϕ(n,m) = ϕ(n+ 1,m) +ϕ(n,m+ 1).

In other words, ϕ is consistent with the branching of P. Such ϕ gives us a non-negative (in
the sense that it takes non-negative values on the basis xnym) functional on R[x,y], which
vanishes on the ideal (x+y −1) ⊂R[x,y]. Furthermore, indecomposable harmonic functions
correspond to multiplicative functionals, i.e. algebra homomorphisms R[x,y]→R.

Finite harmonic functions on the Pascal graph are in a bijective correspondence with
probability measures on the closed unit interval. This result is equivalent to the celebrated
de Finetti theorem. This equivalence follows from the fact that the finite harmonic functions
on P satisfying the condition ϕ(0,0) = 1 are in a bijective correspondence with the so-called
central probability measures on the path space of P, which is the space of infinite sequences
comprised of 0’s and 1’s. The centrality condition means that the measure of a cylinder
depends only on the number of 0’s and 1’s in the initial part of the path, but not on their
positions.

2.2 Earlier works and motivation

The motivation to study semifinite harmonic functions comes from the theory of operator
algebras. Classical character theory of finite and compact groups may be generalized to
other classes of groups and algebras in various ways. For groups and C∗-algebras not of type
I the character theory is related not to irreducible representations but to normal factor rep-
resentations, i.e. homomorphisms to von Neumann algebras with a finite or semifinite trace.
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For AF-algebras one can reformulate the character theory in a combinatorial-algebraic lan-
guage, speaking about non-negative harmonic functions on Bratteli diagrams. Equivalently,
one can treat these harmonic functions as central measures on the space of monotone paths
in the graph. This approach was developed in works of A. M. Vershik and S. V. Kerov in
the late of 70’s — early 80’s. Harmonic functions that take only finite values lead to prob-
ability measures on the path space. These functions are in bijection with finite traces and
correspond to factor representations of finite types. Analogy with factor representations of
types I∞ and II∞ motivates us to study the so-called semifinite harmonic functions. The
semifiniteness property means that the functions may take the value +∞ and these infinite
values can be approximated by finite ones. Semifinite harmonic functions are in bijection
with semifinite lower-semicontinuous traces on appropriate C∗-algebras, see Theorem 1.9
and Definition 1.8 from [4]. This fact indicates that harmonic functions provide a suitable
combinatorial framework for classification problems of traces on AF-algebras.

A. M. Vershik and S. V. Kerov have obtained the classification of semifinite harmonic
functions on the Young and Kingman graphs, [12, 9]. They solved this problem with the
help of the so-called ergodic method, which involves evaluation of a very non-trivial limit.
In principle this method can be applied to any branching graph, but the main difficulty,
which is not always easy to overcome, is to compute that limit. There is another approach
developed by A. J. Wassermann. In his dissertation [31], he suggested to use a bijection be-
tween faithfull factor representations of a primitive C∗-algebra A and those of an arbitrary
closed two-sided ideal of A [31, p. 143, Theorem 7]. There is another ingredient of Wasser-
mann’s method [31, p.146, Theorem 8]. It requires that the Grothendieck group of the C∗-
algebra in question admits a ring structure which turns it into an integral domain satisfying
some additional constraints. A. Wassermann applied his method to determine all indecom-
posable semifinite harmonic functions on the Young graph and proved the classification
result of Vershik and Kerov [12, 9] without the ergodic method or any other complicated
analytical computations.

2.3 Organisation of the thesis

In Section 3 we develop a combinatorial version of Wassermann’s method, which we will
use in further sections. In Section 4 we describe finite and semifinite harmonic functions
on the direct product of branching graphs in terms of the same functions on the factors.
In Section 5 we describe semifinite harmonic functions on the zigzag graph and prove a
semifinite analog of the Vershik-Kerov ring theorem for it.

2.4 Main results

2.4.1 Combinatorial version of Wassermann’s method

Wassermann’s method is based on five statements combinatorial analogs of which are pre-
sented below, see Proposition 2.4.5, Theorem 2.4.9, Proposition 2.4.10, Theorem 2.4.12,
Proposition 2.4.13. These results will be used in the next sections. The original claims
are formulated and proved with the help of the operator algebras theory, while we prove
them in a purely combinatorial way. This allows us to simplify and clarify the proofs signif-
icantly. Moreover, we work with a generalisation of Bratteli diagrams – we consider branch-
ing graphs with formal non-negative multiplicities on edges.

Definition 2.4.1. By a graded graph we mean a pair (Γ ,κ), where Γ is a graded set Γ =
⊔
n≥0

Γn,

Γn are finite sets and κ is a function Γ × Γ →R≥0, that satisfies the following constraints:
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1) if λ ∈ Γn and µ ∈ Γm, then κ(λ,µ) = 0 for m−n , 1.

2) for any vertex λ ∈ Γn there exists µ ∈ Γn+1 with κ(λ,µ) , 0.

Edges of the graded graph (Γ ,κ) are, by definition, pairs of vertices (λ,µ) with κ(λ,µ) > 0.
Then we may treat κ(λ,µ) as a formal multiplicity of the edge.

If λ ∈ Γn, then the number n is uniquely defined. We denote it by |λ|. We write λ↗ µ, if
|µ| − |λ| = 1 and κ(λ,µ) , 0. In this case we say that there is an edge from λ to µ of multiplicity
κ(λ,µ).

Let µ,ν ∈ Γ and |ν| − |µ| = n ≥ 1. Then the following expression

dim(µ,ν) =
∑

λ0,...,λn∈Γ :
µ=λ0↗λ1↗...↗λn−1↗λn=ν

κ(λ0,λ1)κ(λ1,λ2) . . .κ(λn−1,λn).

is the "weighted" number of paths from µ to ν. By definition we also set dim(µ,µ) = 1
and dim(µ,ν) = 0, if ν ≱ µ.

Definition 2.4.2. A branching graph is defined as a graded graph (Γ ,κ) that satisfies the
following conditions

• Γ0 = {�} is a singleton,

• for any λ ∈ Γn with n ≥ 1 there exists µ ∈ Γn−1 such that µ↗ λ.

Let Γ be a graded graph.

Definition 2.4.3. A subset J ⊂ Γ is called a coideal, if for any vertices λ ∈ J and µ ∈ Γ such
that µ < λ we have µ ∈ J .

Definition 2.4.4. A coideal J is called saturated, if for any λ ∈ J there exists a vertex µ ∈ J
such that λ↗ µ. A saturated coideal J is called primitive, if for any saturated coideals J1, J2
such that J = J1 ∪ J2 we have J = J1 or J = J2.

Let Γ be a branching graph. The space of infinite paths in Γ starting at � will be denoted
by T(Γ ). To every path τ = (�↗ λ1↗ λ2↗ . . .) ∈ T(Γ ) we associate the saturated primitive
coideal Γτ =

⋃
n≥1
{λ ∈ Γ | λ ≤ λn}.

Proposition 2.4.5. 1) A saturated coideal J of a graded graph is primitive if and only if for any
two vertices λ1,λ2 ∈ J we can find a vertex µ ∈ J such that µ ≥ λ1,λ2.

2) Every saturated primitive coideal of a branching graph is of the form J = Γτ for some path
τ ∈ T(Γ ).

Definition 2.4.6. A graded graph Γ is called primitive if it is primitive as a coideal, i.e. for
any vertices λ1,λ2 ∈ Γ there exists a vertex µ ∈ Γ such that µ ≥ λ1,λ2.

Definition 2.4.7. Let (Γ ,κ) be a graded graph. A function ϕ : Γ → R≥0 ∪ {+∞} is called
harmonic, if it enjoys the following property:

ϕ(λ) =
∑
µ:λ↗µ

κ(λ,µ)ϕ(µ), ∀λ ∈ Γ .

We agree that

• x+ (+∞) = +∞, for any x ∈R,
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• (+∞) + (+∞) = +∞,

• 0 · (+∞) = 0.

The symbol K0(Γ ) stands for the R-vector space spanned by the vertices of Γ subject to
the following relations

λ =
∑
µ:λ↗µ

κ(λ,µ) ·µ, ∀λ ∈ Γ .

The symbol K+
0 (Γ ) denotes the positive cone in K0(Γ ), generated by the vertices of Γ , i.e.

K+
0 (Γ ) = span

R≥0
(λ | λ ∈ Γ ). The partial order, defined by the cone K+

0 (Γ ), is denoted by ≥K .
That is a ≥K b ⇐⇒ a− b ∈ K+

0 (Γ ). For instance, if λ ≤ µ, then λ ≥K dim(λ,µ) ·µ.
The R≥0-linear map K+

0 (Γ ) → R≥0 ∪ {+∞}, defined by a harmonic function ϕ, will be
denoted by the same symbol ϕ.

Definition 2.4.8. A harmonic function ϕ is called semifinite, if it is not finite and the map
ϕ : K+

0 (Γ )→R≥0 ∪ {+∞} enjoys the following property

ϕ(a) = sup
b∈K+

0 (Γ ) : b≤Ka,
ϕ(b)<+∞

ϕ(b), ∀a ∈ K+
0 (Γ ).

(2.1)

The set of all indecomposable finite (not identically zero) and semifinite harmonic func-
tions on a graded graph Γ is denoted by Hex(Γ ). The subset of Hex(Γ ) consisting of strictly
positive functions is denoted by H◦ex(Γ ).

Theorem 2.4.9. Let I be an ideal of a graded graph Γ .

1) There is a bijective correspondence between {ϕ ∈Hex(Γ ) : ϕ |I , 0} and Hex(I), defined by the
following mutually inverse maps

ResΓI : {ϕ ∈Hex(Γ ) : ϕ |I , 0} →Hex(I), ϕ 7→ ϕ
∣∣∣
I
,

ExtΓI : Hex(I)→ {ϕ ∈Hex(Γ ) : ϕ |I , 0} , ϕ(·) 7→ lim
N→∞

∑
µ∈I
|µ|=N

dim(·,µ)ϕ(µ).

2) If Γ is a primitive graded graph, then the bijection above preserves strictly positive harmonic
functions H◦ex (I)←→H◦ex (Γ ).

Proposition 2.4.10. Let Γ be a graded graph. If ϕ ∈Hex(Γ ), then the support supp(ϕ) := {λ ∈ Γ |
ϕ(λ) > 0} is a primitive coideal.

Definition 2.4.11. A branching graph Γ is called multiplicative, if there exists an associa-
tive Z≥0-graded R-algebra A =

⊕
n≥0

An, A0 = R with a distinguished basis of homogeneous

elements {aλ}λ∈Γ , that satisfy the following conditions

1) degaλ = |λ|

2) a� is the identity in A

3) For â =
∑
ν∈Γ1

κ(�,ν)aν and any vertex λ ∈ Γ we have â · aλ =
∑

µ:λ↗µ
κ(λ,µ)aµ.

Moreover, we assume that the structure constants of A with respect to the basis {aλ}λ∈Γ
are non-negative.
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Theorem 2.4.12 (Wassermann’s no-go theorem). Let Γ be a multiplicative graph. If aλaµ , 0
for any λ,µ ∈ Γ , then the graph Γ admits no strictly positive semifinite indecomposable harmonic
functions.

Proposition 2.4.13 (Boyer’s lemma). Let Γ be a graded graph and ϕ be a harmonic function on
it. Assume that I ⊂ Γ is an ideal, J = Γ \I is the corresponding coideal and we are given a fixed
vertex λ ∈ J . Suppose that there exists a vertex λ′ ∈ I and a positive real number βλ such that
ϕ(λ′) > 0 and for any vertex η ∈ I lying on a large enough level the following inequality holds∑

µ∈J
dim(λ,µ)κ(µ,η) ≥ βλdim(λ′,η).

Then ϕ(λ) = +∞. If in addition (2.1) holds for a = λ′, then it holds for a = λ as well.

2.4.2 Direct product of branching graphs

Here we describe finite and semifinite harmonic functions on the direct product of branch-
ing graphs in terms of the same functions on the factors.

Definition 2.4.14. By the direct product of graded graphs (Γ1,κ1) and (Γ2,κ2) we mean the
graded graph (Γ1 × Γ2,κ1 ×κ2), where

(Γ1 × Γ2)k =
⊔
n,m≥0:
n+m=k

(Γ1)n × (Γ2)m

and

(κ1 ×κ2)
(
(λ1,µ1); (λ2,µ2)

)
=


κ1(λ1,λ2), if µ1 = µ2,

κ2(µ1,µ2), if λ1 = λ2,

0 otherwise.

Example 2.4.15. The Pascal triangle is the direct product of two copies of Z≥0.

We denote by FHex(Γ ) the set of all finite normalized indecomposable harmonic func-
tions on a branching graph Γ .

Theorem 2.4.16. Let Γ1 and Γ2 be branching graphs and ϕ be a normalized indecomposable finite
harmonic function on Γ1× Γ2, i.e. ϕ ∈ FHex(Γ1× Γ2). Then only one of the following situations can
occur:

1) There existϕ1 ∈ FHex(Γ1), ϕ2 ∈ FHex(Γ2) and real positive numbersw1,w2 withw1+w2 = 1
such that

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ). (2.2)

Moreover, these ϕ1, ϕ2, w1,w2 are uniquely defined.

2) There exist ϕ1 ∈ FHex(Γ1) such that

ϕ(λ,µ) =

0, if µ ,�,
ϕ1(λ), if µ = �.

(2.3)

3) There exist ϕ2 ∈ FHex(Γ2) such that

ϕ(λ,µ) =

0, if λ ,�,
ϕ2(µ), if λ = �.

(2.4)
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Furthermore, every harmonic function on Γ1 × Γ2 of the form 1), 2), or 3) is indecomposable.

Remark 2.4.17. One can readily see that (2.3) and (2.4) are partial cases of (2.2) correspond-
ing to w2 = 0 and w1 = 0. We formulate Theorem 2.4.16 in this form to simplify the compar-
ison with Theorem 2.4.18.

Theorem 2.4.18. Let Γ1 and Γ2 be graded graphs and ϕ ∈ Hex(Γ1 × Γ2), then only one of the
following situations can occur:

1) There exist ϕ1 ∈Hex(Γ1), ϕ2 ∈Hex(Γ2) and real positive numbers w1,w2 with w1 +w2 = 1
such that

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ).

Moreover, these ϕ1 and ϕ2 are defined uniquely up to multiplicative constants.
We agree that 0 · (+∞) = 0.

2) There exist ϕ1 ∈Hex(Γ1) and ν2 ∈ Γ2 such that

ϕ(λ,µ) =


0, if µ ≰ ν2,

+∞, if µ < ν2,

ϕ1(λ), if µ = ν2.

3) There exist ν1 ∈ Γ1 and ϕ2 ∈Hex(Γ2) such that

ϕ(λ,µ) =


0, if λ ≰ ν1,

+∞, if λ < ν1,

ϕ2(µ), if λ = ν1.

Furthermore, every harmonic function on Γ1 × Γ2 of the form 1), 2), or 3) is finite or semifinite,
and indecomposable.

2.4.3 The zigzag graph

In this section we describe semifinite harmonic functions on the zigzag graph and prove a
semifinite analog of the Vershik-Kerov ring theorem for it.

Let us consider compositions (ordered partitions) of natural numbers. We identify them
with the ribbon diagrams, which are connected skew Young diagrams written in the French
notation and containing no 2× 2 blocks of boxes. A composition λ = (λ1, . . . ,λl) is identified
with the ribbon Young diagram having λi boxes in the i-th row. For instance, the only one
composition of 1 gets identified with □. The number of boxes in λ equals |λ| = λ1 + . . .+λl .
We treat ribbon Young diagrams as zigzags crawling from the top-left corner to the bottom-
right corner. There is a bijection between the zigzags and the binary words.

A binary word is a word in the alphabet of two symbols, + and −. We will use the follow-
ing conventions

n
+ = + . . .+︸︷︷︸

n

and n− = − . . .−︸︷︷︸
n

.

The bijection between the zigzags and the binary words is as follows. From left to right
we read the symbols off the binary word and add boxes to the simplest zigzag □. If the
symbol is +, then we add a box in the horizontal direction to the right, and if the symbol is
−, then we add a box in the vertical direction to the bottom. For instance, the binary word
−+ corresponds to the zigzag with one box in the first row and two boxes in the second row.
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The binary word corresponding to a zigzag λ will be denoted by bw(λ). So, bw(□) is the
empty binary word.

Each binary word can be uniquely represented as a consecutive union of blocks with alter-
nating signs. By a block we mean a tuple of symbols of the same sign. For instance, the word

+− 3
+ splits into three blocks, +, −, and

3
+. So, a block can be positive or negative depending

on the sign of symbols. As for zigzags, these positive and negative blocks correspond to
rows and columns.

By a cluster we mean a symbol, + or −, with an assigned to it formal positive multiplicity,
which may be infinite. We say that a cluster is infinite, if its multiplicity is infinite, otherwise
we say that the cluster is finite. A template is an ordered collection of alternating clusters.
Furthermore, we always assume that a template contains at least one infinite cluster.

Definition 2.4.19. A template is called finite, if it does not contain finite clusters except those
one-symbol clusters which are not outermost and whose two neighbors are infinite clusters
of the same sign. A template which is not finite will be called semifinite.

Let t be a semifinite template. By a separating cluster of t we mean a one-symbol cluster
which is not an outermost cluster of t and whose two neighbors are infinite clusters of the
same sign. By the zigzag flange of t we call a tuple of binary words each of which consists of
finite but not separating clusters of t standing nearby. The zigzag flange will be denoted by
fl(t).

Let t be a semifinite template. By a section of t we mean a maximal collection of consec-
utive clusters that form a finite template. Note that the words from the zigzag flange of t
split t into sections.

Let t be an arbitrary template. By tn we denote the binary word which is obtained from t
by replacing all infnite multiplicities by the natural number n. Then the subset of the zigzag
graph Z(t) := {λ ∈ Z | bw(λ) < tn for some n} consists of all the zigzags (or binary words) that
are of the form t.

Definition 2.4.20. Let us set J(t) =
⋃
r Z(r) for a semifinite template t, where the union is

taken over all r obtained from t by removing a single symbol from some cluster correspond-
ing to a block of a binary word from the zigzag flange fl(t).

Let t have k sections t1, . . . , tk. Assume that fl(t) = (a0, . . . , ak) and the splitting of t into
sections looks like

t = (a0, t1, a1, . . . , ak−1, tk , ak).

If a0 or ak is the empty binary word, then we should merely ignore it in all what follows.

Lemma 2.4.21. If λ ∈ Z(t)\J(t), then

bw(λ) = a0 ⊔ bw(λ(1))⊔ a1 ⊔ . . .⊔ bw(λ(k))⊔ ak

for some λ(i) ∈ Z(ti), which are uniquely defined.

Definition 2.4.22. By a semifinite zigzag growth model we call a pair (t,w), where t is a semifi-
nite template having m infinite clusters and w = (w1, . . . ,wm) is an m-tuple of positive real
numbers such that w1 + . . .+wm = 1.

Let (t,w) be a semifinite zigzag growth model. The splitting of t into sections gives us a
splitting of w

w = v1 ⊔ . . .⊔ vk ,
where each vi is a tuple of real numbers from w = (w1, . . . ,wm) corresponding to the infinite
clusters of ti .
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Definition 2.4.23. For any λ ∈ Z we set

ϕt,w(λ) =


Fλ(1)(v1) · . . . ·Fλ(k)(vk), if λ ∈ Z(t)\J(t),
+∞, if λ ∈ J(t),
0, if λ < Z(t).

where λ 7→ (λ(1), . . . ,λ(k)) is the map provided by Lemma 2.4.21 and Fλ(i)(vi) is defined as
follows:

Fµ(x1,x2, . . . ,xn) =
∑

x
|µ(1)|
1 x

|µ(2)|
2 . . .x

|µ(n)|
n , (2.5)

where the sum is taken over the following splittings of µ into n zigzags µ(1), . . . ,µ(n) such
that µ(i) is a row, if the number xi ∈ {w1, . . . ,wm} corresponds to a positive cluster of t, and
µ(i) is a column, if xi corresponds to a negative cluster of t. Note that some of these µ(i) may
be empty.

Note that expression (2.5) comes from a multiplicative map QSym→R, see Section 5.4.1
on Kerov’s construction.

Theorem 2.4.24.

1) For any semifinite zigzag growth model (t,w) the function ϕt,w is a semifinite indecomposable
harmonic function on Z.

2) Any semifinite indecomposable harmonic function on Z is proportional to ϕt,w for some semifi-
nite zigzag growth model (t,w).1

3) The functions ϕt,w are distinct for distinct semifinite zigzag growth models (t,w).

Now we would like to formulate the semifinite Vershik-Kerov ring theorem for the zigzag
graph. For that we extend our semifinite harmonic functions on Z to span

R≥0
(Fλ | λ ∈ Z) ⊂

QSym, where {Fλ}λ∈Z are fundamental quasisymmetric functions.

Theorem 2.4.25. Let (t,w) be a semifinite zigzag growth model. For any µ ∈ Z(t)\J(t) and λ ∈ Z
we have

ϕt,w
(
FλFµ

)
= ϕw(Fλ)ϕt,w(Fµ),

where ϕw is the finite harmonic function on Z defined by ϕw(λ) = Fλ(w), see formula (2.5) above.
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Chapter 3

Combinatorial version of Wassermann’s
method

3.1 Summary in French

La méthode de Wassermann est basée sur cinq énoncés dont nous présentons des analogues
combinatoires ci-dessous, voir la Proposition 3.1.5, le Théorème 3.1.9, la Proposition 3.1.10,
le Théorème 3.1.12 et la Proposition 3.1.13. Ces résultats seront utilisés dans les sections
suivantes. Les énoncés originaux sont formulés et démontrés à l’aide de la théorie des al-
gèbres d’opérateurs, tandis que nous les prouvons de manière purement combinatoire. Cela
nous permet de simplifier et de clarifier considérablement les démonstrations. De plus,
nous travaillons avec une généralisation des diagrammes de Bratteli - nous considérons des
graphes de branchement avec des multiplicités formelles non-négatives sur les arêtes.

Définition 3.1.1. Par un graphe gradué, nous entendons une paire (Γ ,κ), où Γ est un ensem-
ble gradué Γ =

⊔
n≥0

Γn, Γn étant des ensembles finis et κ est une fonction Γ × Γ → R≥0, qui

satisfait aux contraintes suivantes:

1) si λ ∈ Γn et µ ∈ Γm, alors κ(λ,µ) = 0 pour tous m−n , 1.

2) pour tout sommet λ ∈ Γn, il existe µ ∈ Γn+1 tel que κ(λ,µ) , 0.

Les arêtes du graphe gradué (Γ ,κ) sont, par définition, des paires de sommets (λ,µ) avec
κ(λ,µ) > 0. Nous pouvons donc considérer κ(λ,µ) comme une multiplicité formelle de
l’arête.

Si λ ∈ Γn, alors le nombre n est unique. Nous le notons par |λ|. Nous écrivons λ↗ µ, si
|µ|− |λ| = 1 et κ(λ,µ) , 0. Dans ce cas, nous disons qu’il existe une arête de λ à µ de multiplicité
κ(λ,µ).

Soit µ,ν ∈ Γ et |ν| − |µ| = n ≥ 1. Alors l’expression suivante

dim(µ,ν) =
∑

λ0,...,λn∈Γ :
µ=λ0↗λ1↗...↗λn−1↗λn=ν

κ(λ0,λ1)κ(λ1,λ2) . . .κ(λn−1,λn).

représente le nombre pondéré de chemins de µ à ν. Par définition, nous avons également
dim(µ,µ) = 1 et dim(µ,ν) = 0 si ν ≱ µ.

Définition 3.1.2. Un graphe de branchement est défini comme un graphe gradué (Γ ,κ) qui
satisfait les conditions suivantes :

• Γ0 = � est un singleton,
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• pour tout λ ∈ Γn avec n ≥ 1, il existe µ ∈ Γn−1 tel que µ↗ λ.

Soit Γ un graphe gradué.

Définition 3.1.3. Un sous-ensemble J ⊂ Γ est appelé un co-idéal si pour tous les sommets
λ ∈ J et µ ∈ Γ tels que µ < λ, on a µ ∈ J .

Définition 3.1.4. Un co-idéal J est appelé saturé si pour tout λ ∈ J , il existe un sommet µ ∈ J
tel que λ↗ µ. Un co-idéal saturé J est appelé primitif si pour tous les co-idéaux saturés J1
et J2 tels que J = J1 ∪ J2, on a J = J1 ou J = J2.

Soit Γ un graphe de branchement. L’espace des chemins infinis dans Γ commençant par �
sera noté T(Γ ). À chaque chemin τ = (�↗ λ1↗ λ2↗ . . .) ∈ T(Γ ), nous associons le co-idéal
saturé primitif Γτ =

⋃
n≥1
{λ ∈ Γ | λ ≤ λn}.

Proposition 3.1.5. 1) Un co-idéal saturé J d’un graphe gradué est primitif si et seulement
si pour tout couple de sommets λ1,λ2 ∈ J , on peut trouver un sommet µ ∈ J tel que
µ ≥ λ1,λ2.

2) Tout co-idéal primitif saturé d’un graphe de branchement est de la forme J = Γτ pour
un certain chemin τ ∈ T(Γ ).

Définition 3.1.6. Un graphe gradué Γ est appelé primitif s’il est primitif en tant que co-
idéal, c’est-à-dire que pour tout couple de sommets λ1,λ2 ∈ Γ , il existe un sommet µ ∈ Γ tel
que µ ≥ λ1,λ2.

Définition 3.1.7. Soit (Γ ,κ) un graphe gradué. Une fonction ϕ : Γ → R≥0 ∪+∞ est appelée
harmonique si elle vérifie la propriété suivante:

ϕ(λ) =
∑
µ:λ↗µ

κ(λ,µ)ϕ(µ), ∀λ ∈ Γ .

Nous convenons que

• x+ (+∞) = +∞, pour tout x ∈R,

• (+∞) + (+∞) = +∞,

• 0 · (+∞) = 0.

Le symbole K0(Γ ) désigne le R-espace vectoriel engendré par les sommets de Γ sujet aux
relations suivantes

λ =
∑
µ:λ↗µ

κ(λ,µ) ·µ, ∀λ ∈ Γ .

Le symbole K+
0 (Γ ) désigne le cône positif dans K0(Γ ), généré par les sommets de Γ , c’est-à-

dire K+
0 (Γ ) = span

R≥0
(λ | λ ∈ Γ ). L’ordre partiel, défini par le cône K+

0 (Γ ), est noté ≥K . Cela
signifie que a ≥K b ⇐⇒ a− b ∈ K+

0 (Γ ). Par exemple, si λ ≤ µ, alors λ ≥K dim(λ,µ) ·µ.
L’application R≥0-linéaire K+

0 (Γ )→ R≥0 ∪ +∞, définie par une fonction harmonique ϕ,
sera notée par le même symbole ϕ.

Définition 3.1.8. Une fonction harmonique ϕ est appelée semi-finie, si elle n’est pas finie et
l’application ϕ : K+

0 (Γ )→R≥0 ∪+∞ vérifie la propriété suivante

ϕ(a) = sup
b∈K+

0 (Γ ) : b≤Ka,
ϕ(b)<+∞

ϕ(b), ∀a ∈ K+
0 (Γ ).

(3.1)
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L’ensemble de toutes les fonctions harmoniques indécomposables finies (non identique-
ment nulles) et semi-finies sur un graphe gradué Γ est noté Hex(Γ ). Le sous-ensemble de
Hex(Γ ) composé de fonctions strictement positives est noté H◦ex(Γ ).

Théorème 3.1.9. Soit I un idéal d’un graphe gradué Γ .

1) Il existe une correspondance bijective entre {ϕ ∈Hex(Γ ) : ϕ |I , 0} et Hex(I), définie par
les applications mutuellement inverses suivantes :

ResΓI : {ϕ ∈Hex(Γ ) : ϕ |I , 0} →Hex(I), ϕ 7→ ϕ
∣∣∣
I
,

ExtΓI : Hex(I)→ {ϕ ∈Hex(Γ ) : ϕ |I , 0} , ϕ(·) 7→ lim
N→∞

∑
µ∈I
|µ|=N

dim(·,µ)ϕ(µ).

2) Si Γ est un graphe gradué primitif, alors la bijection ci-dessus préserve strictement les
fonctions harmoniques strictement positives H◦ex (I)←→H◦ex (Γ ).

Proposition 3.1.10. Soit Γ un graphe gradué. Si ϕ ∈ Hex(Γ ), alors le support supp(ϕ) :=
λ ∈ Γ | ϕ(λ) > 0 est un co-idéal primitif.

Définition 3.1.11. Un graphe de branchement Γ est appelé multiplicatif s’il existe une R-
algèbre associative graduée Z≥0, A =

⊕
n≥0

An, A0 = R, avec une base distinguée d’éléments

homogènes aλλ ∈ Γ qui satisfont les conditions suivantes :

1) degaλ = |λ|,

2) a� est l’élément identité dans A,

3) Pour â =
∑
ν∈Γ1

κ(�,ν)aν et tout sommet λ ∈ Γ , nous avons â · aλ =
∑

µ:λ↗µ
κ(λ,µ)aµ.

De plus, nous supposons que les constantes de structure de A par rapport à la base
{aλ}λ∈Γ sont non-négatives.

Théorème 3.1.12 (Théorème de non-existence de Wassermann). Soit Γ un graphe multipli-
catif. Si aλaµ , 0 pour tous les λ,µ ∈ Γ , alors le graphe Γ n’admet pas de fonctions har-
moniques indécomposables strictement positives et semi-finies.

Proposition 3.1.13 (Lemme de Boyer). Soit Γ un graphe gradué et ϕ une fonction har-
monique sur ce graphe. Soit I ⊂ Γ un idéal et J = Γ \I le co-idéal correspondant et λ ∈ J
un sommet fixé. Supposons qu’il existe un sommet λ′ ∈ I et un nombre réel positif βλ tels
que ϕ(λ′) > 0 et que pour tout sommet η ∈ I situé à un niveau suffisamment élevé, l’inégalité
suivante soit vérifiée ∑

µ∈J
dim(λ,µ)κ(µ,η) ≥ βλdim(λ′,η).

Alors ϕ(λ) = +∞. Si de plus (3.1) est vérifiée pour a = λ′, alors elle l’est également pour
a = λ.

3.2 Ideals and coideals of graded graphs

In this section we recall main notions on branching graphs, ideals and coideals.

Definition 3.2.1. By a graded graph we mean a pair (Γ ,κ), where Γ is a graded set Γ =
⊔
n≥0

Γn,

Γn are finite sets and κ is a function Γ × Γ →R≥0, that satisfies the following constraints:
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1) if λ ∈ Γn and µ ∈ Γm, then κ(λ,µ) = 0 for m−n , 1.

2) for any vertex λ ∈ Γn there exists µ ∈ Γn+1 with κ(λ,µ) , 0.

Edges of the graded graph (Γ ,κ) are, by definition, pairs of vertices (λ,µ) with κ(λ,µ) > 0.
Then we may treat κ(λ,µ) as a formal multiplicity of the edge.

If λ ∈ Γn, then the number n is uniquely defined. We denote it by |λ|. We write λ↗ µ, if
|µ| − |λ| = 1 and κ(λ,µ) , 0. In this case we say that there is an edge from λ to µ of multiplicity
κ(λ,µ).

Condition 1) from Definition 3.2.1 means that we allow edges only between adjacent
levels and condition 2) means that each vertex must be connected by an edge with some
vertex from the higher level.

A path in a graded graph Γ is a (finite or infinite) sequence of vertices λ1,λ2,λ3, . . . such
that λi ↗ λi+1 for every i. We will write ν > µ if |ν| > |µ| and there is a path that connects µ
and ν. We write ν ≥ µ, if ν = µ or ν > µ. Relation ≥ turns Γ into a poset.

Let µ,ν ∈ Γ and |ν| − |µ| = n ≥ 1. Then the following expression

dim(µ,ν) =
∑

λ0,...,λn∈Γ :
µ=λ0↗λ1↗...↗λn−1↗λn=ν

κ(λ0,λ1)κ(λ1,λ2) . . .κ(λn−1,λn).
(3.2)

is the "weighted" number of paths from µ to ν. By definition we also set dim(µ,µ) = 1
and dim(µ,ν) = 0, if ν ≱ µ. The function dim(·, ·) : Γ × Γ →R≥0 is called the shifted dimension.
Note that dim(µ,ν) = κ(µ,ν), if µ↗ ν, and for µ ∈ Γm, ν ∈ Γn and any k such that m ≤ k ≤ n
we have

dim(µ,ν) =
∑
λ:λ∈Γk

dim(µ,λ)dim(λ,ν). (3.3)

Definition 3.2.2. A branching graph is defined as a graded graph (Γ ,κ) that satisfies the
following conditions

• Γ0 = {�} is a singleton,

• for any λ ∈ Γn with n ≥ 1 there exists µ ∈ Γn−1 such that µ↗ λ.

For a branching graph (Γ ,κ) we denote the expression dim(�,λ) by dim(λ) and call it the
dimension of λ.

Definition 3.2.3. A subset of vertices I of a graded graph Γ is called an ideal, if for any
vertices λ ∈ I and µ ∈ Γ such that µ > λ we have µ ∈ I . A subset J ⊂ Γ is called a coideal, if for
any vertices λ ∈ J and µ ∈ Γ such that µ < λ we have µ ∈ J .

Remark 3.2.4. Our terminology differs from the terminology of poset theory. Namely, our
ideals and coideals are usually called filters and ideals respectively [26].

There is a bijective correspondence I ↔ Γ \I between ideals and coideals. Let J be a
coideal and I = Γ \J be the corresponding ideal. Then the following conditions are equiva-
lent:

1) if
{
µ
∣∣∣ λ↗ µ

}
⊂ I , then λ ∈ I

2) for any λ ∈ J there exists a vertex µ ∈ J such that λ↗ µ.
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Definition 3.2.5. An ideal I and the corresponding coideal J are called saturated, if they
satisfy the conditions above. A saturated ideal I is called primitive, if for any saturated
ideals I1, I2 such that I = I1 ∩ I2 we have I = I1 or I = I2. A saturated coideal J is called
primitive, if for any saturated coideals J1, J2 such that J = J1 ∪ J2 we have J = J1 or J = J2.

The bijection I ↔ Γ \I maps primitive saturated ideals to primitive saturated coideals
and vice versa. We will also use the fact that ideals and saturated coideals are graded graphs
themselves.

Let Γ be a branching graph. The space of infinite paths in Γ starting at � will be denoted
by T(Γ ). To every path τ = (�↗ λ1↗ λ2↗ . . .) ∈ T(Γ ) we associate the saturated primitive
coideal Γτ =

⋃
n≥1
{λ ∈ Γ | λ ≤ λn}.

In the next proposition we give a combinatorial characterization of saturated primitive
coideals of an arbitrary graded graph, see [5]. Moreover, for branching graphs we describe
all such coideals in terms of path coideals Γτ , see [27] and [31, p.129].

Proposition 3.2.6. 1) A saturated coideal J of a graded graph is primitive if and only if for any
two vertices λ1,λ2 ∈ J we can find a vertex µ ∈ J such that µ ≥ λ1,λ2.

2) Every saturated primitive coideal of a branching graph is of the form J = Γτ for some path
τ ∈ T(Γ ).

Proof. Let J ⊂ Γ be a saturated coideal. Suppose that there exist vertices λ1,λ2 ∈ J , that do
not possess a common majorant. Let us prove that J may be presented as a union of two
distinct proper saturated coideals. We need to introduce some notation. For any λ ∈ J the
subset of vertices of J , that lie above λ, will be denoted by Jλ, i.e. Jλ = {µ ∈ J | µ ≥ λ}. For
any subset A ⊂ J we define ↓ A as the subset of vertices of J , that lie below some vertex of
A, i.e. ↓ A = {µ ∈ J | µ ≤ λ, for some λ ∈ A}. Finally, for any ideal I of J the symbol sat(I)
stands for the minimal saturated ideal that contains I . In other words, sat (I) consists of all
the vertices of I and all vertices λ ∈ J such that

{
µ
∣∣∣ λ↗ µ

}
⊂ I . With this notation in mind

we set J1 =↓ (Jλ1), J2 = J\sat(Jλ1). It is not difficult to see that J1 and J2 are saturated coideals
and their union coincides with J . Obviously, λ1 ∈ J1 and λ1 < J2. Next, we use the fact that
vertices λ1 and λ2 do not possess a common majorant to show that λ2 ∈ J2 and λ2 < J1. Thus,
J1 and J2 are proper distinct coideals of J .

Now suppose that for any vertices λ1,λ2 ∈ J there exists µ ∈ J with µ ≥ λ1,λ2. We will
show that J = Γτ for some path τ ∈ T(Γ ). Let us denote by x1,x2, . . . all the vertices of J
enumerated in any (fixed) order. Since J is primitive, it follows that we can construct a
sequence of vertices y1 ≤ y2 ≤ . . . of J with the following properties

y1 = x1,

y2 ≥ y1,

y2 ≥ x2,

y2 ∈ J,

y3 ≥ y2,

y3 ≥ x3,

y3 ∈ J,

. . .

. . .

. . .

yn ≥ yn−1

yn ≥ xn
yn ∈ J,

. . .

. . .

. . .

Let τ ∈ T(Γ ) be any path that goes through the vertices y1, y2, . . .. Obviously, J = Γτ .

Remark 3.2.7. One can formulate an obvious analog of the second part of Proposition 3.2.6
for arbitrary graded graphs, but this is of no particular importance to us.

Definition 3.2.8. A graded graph Γ is called primitive if it is primitive as a coideal, i.e. for
any vertices λ1,λ2 ∈ Γ there exists a vertex µ ∈ Γ such that µ ≥ λ1,λ2.
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3.3 Semifinite harmonic functions

Definition 3.3.1. Let (Γ ,κ) be a graded graph. A function ϕ : Γ → R≥0 ∪ {+∞} is called
harmonic, if it enjoys the following property:

ϕ(λ) =
∑
µ:λ↗µ

κ(λ,µ)ϕ(µ), ∀λ ∈ Γ .

Throughout the paper we use the following conventions:

• x+ (+∞) = +∞, for any x ∈R,

• (+∞) + (+∞) = +∞,

• 0 · (+∞) = 0.

Definition 3.3.2. The set of all vertices λ ∈ Γ with ϕ(λ) < +∞ is called the finiteness ideal of
ϕ. We denote the zero ideal {λ ∈ Γ | ϕ(λ) = 0} by kerϕ and the support {λ ∈ Γ | ϕ(λ) > 0} by
suppϕ.

Note that the zero set ker(ϕ) is a saturated ideal and supp(ϕ) is a saturated coideal of Γ
and ker(ϕ)∪ supp(ϕ) = Γ . Furthermore, we can restrict ϕ to any ideal or saturated coideal
that contains supp(ϕ). The restriction is a harmonic function on that ideal or coideal re-
spectively.

The symbol K0(Γ ) stands for the R-vector space spanned by the vertices of Γ subject to
the following relations

λ =
∑
µ:λ↗µ

κ(λ,µ) ·µ, ∀λ ∈ Γ .

The symbol K+
0 (Γ ) denotes the positive cone in K0(Γ ), generated by the vertices of Γ , i.e.

K+
0 (Γ ) = span

R≥0
(λ | λ ∈ Γ ). The partial order, defined by the cone K+

0 (Γ ), is denoted by ≥K .
That is a ≥K b ⇐⇒ a− b ∈ K+

0 (Γ ). For instance, if λ ≤ µ, then λ ≥K dim(λ,µ) ·µ.

Remark 3.3.3. Notation K0(Γ ) is motivated by the following fact. If all formal multiplic-
ities of edges are integer numbers, then the vector space K0(Γ ) can be identified with the
Grothendieck K0-group of the corresponding AF-algebra. Under such a bijection the cone
K+

0 (Γ ) gets identified with the cone of true modules [14, Theorem 13 on page 32].

Observation 3.3.4. If b ∈ K+
0 (Γ ) and b ≤K λ then b has the form

b =
∑

µ : |µ|=N
bµµ

for someN and some real numbers bµ subject to the following constraints 0 ≤ bµ ≤ dim(λ,µ).
In particular, bµ = 0, if µ ≱ λ.

The R≥0-linear map K+
0 (Γ ) → R≥0 ∪ {+∞}, defined by a harmonic function ϕ, will be

denoted by the same symbol ϕ. Note that this map is monotone in the sense of the partial
order. Namely, if a ≥K b, then ϕ(a) ≥ ϕ(b).

Definition 3.3.5. A harmonic function ϕ is called semifinite, if it is not finite and the map
ϕ : K+

0 (Γ )→R≥0 ∪ {+∞} enjoys the following property

ϕ(a) = sup
b∈K+

0 (Γ ) : b≤Ka,
ϕ(b)<+∞

ϕ(b), ∀a ∈ K+
0 (Γ ).

(3.4)
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If ϕ(a) < +∞, then condition (3.4) becomes the trivial identity ϕ(a) = ϕ(a).
Condition (3.4) arises in the theory of operator algebras in a natural way [4, Definition

1.8].

Remark 3.3.6. A harmonic function ϕ is semifinite if and only if there exists an element
a ∈ K+

0 (Γ ) with ϕ(a) = +∞ and for any such a we can find a sequence {an}n≥1 ⊂ K+
0 (Γ ) such

that

• an ≤K a,

• ϕ(an) < +∞,

• lim
n→+∞

ϕ(an) = +∞.

We will call this {an}n≥1 an approximating sequence.

Proposition 3.3.7. A harmonic function ϕ is semifinite if and only if it is not finite and for any
vertex λ ∈ Γ the following equality holds

ϕ(λ) = lim
N→∞

∑
µ : µ≥λ, |µ|=N
0<ϕ(µ)<+∞

dim(λ,µ)ϕ(µ).
(3.5)

Proof. If equality (3.5) is fulfilled, then ϕ is semifinite, since prelimit sums give us an ap-
proximating sequence. If ϕ is semifinite and ϕ(λ) < +∞ then equality (3.5) is a trivial con-
sequence of Definition 3.3.1. If ϕ(λ) = +∞, then we can find an approximating sequence
and Observation 3.3.4 yields that the prelimit expression is unbounded in N . We are left to
prove that the limit exists. In fact, we show that the prelimit sequence is non-decreasing in
N . Let us denote the prelimit expression by ψN .

Next, the function

φ(λ) =

ϕ(λ), if 0 < ϕ(λ) < +∞
0 otherwise

is subharmonic:
φ(λ) ≤

∑
µ : λ↗µ

κ (λ,µ)φ(µ).

Then from
ψN =

∑
µ : |µ|=N

dim(λ,µ)φ(µ)

and equality (3.3) it follows that ψ1 ≤ ψ2 ≤ ψ3 ≤ . . . .

Corollary 3.3.8. If ϕ is a semifinite harmonic function on a graded graph Γ , then for any vertex
λ ∈ Γ with ϕ(λ) = +∞ there exists a vertex µ ≥ λ such that 0 < ϕ(µ) < +∞.

Remark 3.3.9. Let {cµ}µ∈Γ be a tuple of non-negative real "numbers" cµ ∈R≥0∪{+∞} such that
for every vertex λ ∈ Γ there exists the limit lim

N→∞

∑
µ∈ΓN

dim(λ,µ)cµ, which may be infinite. For

instance, we may take cµ = ψ(µ), where ψ is a subharmonic function: ψ(λ) ≤
∑

µ:λ↗µ
κ(λ,µ)ψ(µ).

Then the function
c(λ) = lim

N→∞

∑
µ∈ΓN

dim(λ,µ)cµ

is harmonic, cf. [16, p.4], see also [9, formula (47)].
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Definition 3.3.10. A semifinite harmonic function ϕ is called indecomposable, if for any
finite or semifinite harmonic function ϕ′ which does not vanish identically on the finiteness
ideal of ϕ and satisfies the inequality ϕ′ ≤ ϕ we have ϕ′ = const ·ϕ on the finiteness ideal of
ϕ.

At the first glance the finiteness ideal of ϕ′ might be bigger than that of ϕ, but the next
remark shows that this is not the case.

Remark 3.3.11. If ϕ and ϕ′ from Definition 3.3.10 are proportional on the finiteness ideal
of ϕ, then they are proportional on the whole graph Γ . Indeed, by virtue of Proposition 3.3.7
we may write

ϕ(λ) = const−1 · lim
N→∞

∑
µ : µ≥λ, |µ|=N
0<ϕ(µ)<+∞

dim(λ,µ)ϕ′(µ) ≤

≤ const−1 · lim
N→∞

∑
µ : µ≥λ, |µ|=N
0<ϕ′(µ)<+∞

dim(λ,µ)ϕ′(µ) = const−1 ·ϕ′(λ).

Thus, ϕ′ ≤ ϕ ≤ const−1 ·ϕ′ and finitiness ideals of ϕ and ϕ′ coincide.

Notation. The set of all indecomposable finite (not identically zero) and semifinite harmonic
functions on a graded graph Γ is denoted by Hex(Γ ). The subset of Hex(Γ ) consisting of
strictly positive functions is denoted by H◦ex(Γ ).

Lemma 3.3.12. Let I be an ideal of a graded graph Γ . Assume that ϕ ∈ Hex(Γ ) does not vanish
on I identically. Then the following equality holds

ϕ(λ) = lim
N→∞

∑
µ∈I
|µ|=N

dim(λ,µ)ϕ(µ), λ ∈ Γ .
(3.6)

Moreover, for any element a ∈ K+
0 (Γ ) we have ϕ(a) = sup

b∈K+
0 (I) : b≤Ka,
ϕ(b)<+∞

ϕ(b).

Remark 3.3.13. If we omit the assumption thatϕ is indecomposable, then the equality above
should be replaced by the inequality

ϕ(λ) ≥ lim
N→∞

∑
µ∈I
|µ|=N

dim(λ,µ)ϕ(µ).

Proof of Lemma 3.3.12. First of all, we remark that there exists a vertex ν ∈ I such that 0 <
ϕ(ν) < +∞. Indeed, ϕ does not equal zero identically on I , hence we can find a vertex ν′ ∈ I
such that ϕ(ν′) > 0. If ϕ(ν′) = +∞, then by Corollary 3.3.8 we can find another vertex ν > ν′

with 0 < ϕ(ν) < +∞, which necessarily lies in I .
Note that the function

φ(λ) =

ϕ(λ), if λ ∈ I,
0 otherwise

is subharmonic on Γ . Then by Remark 3.3.9 the right-hand side of (3.6) defines a harmonic
function on Γ . From Observation 3.3.4 and Remark 3.3.6 it follows that the restriction of ϕ
to the ideal I is a finite or semifinite harmonic function on I . Then the harmonic function
on Γ defined by the right-hand side of (3.6) is finite or semifinite as well. Next, by the very
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definition of harmonic functions, the prelimit expression is majorized by ϕ for any N . Then
the harmonic function that is defined as the limit N → +∞ is also majorized by ϕ. Finally,
indecomposibility of ϕ implies that ϕ and the right-hand side of (3.6) are proportional, but
they coincide on the ideal I . Thus, they coincide on the whole graph Γ , since there exists
ν ∈ I with 0 < ϕ(ν) < +∞.

Now we are ready to prove the most crucial statement of Wassermann’s method. The
following theorem is a combinatorial analog of a result, which is well known in the context
of C∗-algebras, see [31, Theorem 7 p.143, Corollary p.144 ] and [1, II.6.1.6 p.102].

Theorem 3.3.14. Let I be an ideal of a graded graph Γ .

1) There is a bijective correspondence between {ϕ ∈Hex(Γ ) : ϕ |I , 0} and Hex(I), defined by the
following mutually inverse maps

ResΓI : {ϕ ∈Hex(Γ ) : ϕ |I , 0} →Hex(I), ϕ 7→ ϕ
∣∣∣
I
,

ExtΓI : Hex(I)→ {ϕ ∈Hex(Γ ) : ϕ |I , 0} , ϕ(·) 7→ lim
N→∞

∑
µ∈I
|µ|=N

dim(·,µ)ϕ(µ).

Furthermore, for any element a ∈ K+
0 (Γ ) we have ExtΓI (ϕ)(a) = sup

b∈K+
0 (I) : b≤Ka,
ϕ(b)<+∞

ϕ(b).

2) If Γ is a primitive graded graph, then the bijection above preserves strictly positive harmonic
functions H◦ex (I)←→H◦ex (Γ ).

Proof. Suppose that ϕ ∈Hex(Γ ) and ϕ |I , 0. Then from Observation 3.3.4 and Remark 3.3.6
it follows that ResΓI (ϕ) = ϕ |I is a finite or semifinite harmonic function on I . Lemma 3.3.12
implies that ResΓI (ϕ) is indecomposable.

Now let ϕ ∈Hex(I). From the proof of Proposition 3.3.7 it follows that the limit from the
definition of ExtΓI exists and ExtΓI (ϕ) is a finite or semifinite harmonic function on Γ . Note
that ExtΓI (ϕ) is strictly positive for ϕ ∈ H◦ex(I) because of the following simple fact, which
holds for any primitive graded graph. For any vertex λ ∈ Γ there exists a vertex µ ∈ I such
that µ ≥ λ.

Let us show that the harmonic function ExtΓI (ϕ) is indecomposable for any ϕ ∈ Hex(I).
Suppose that ExtΓI (ϕ) ≥ ψ, for some ψ, that does not vanish on the finiteness ideal of ExtΓI (ϕ)
identically. We denote that ideal by Ĩ . The finiteness ideal of ϕ is denoted by Iϕ. Let us
introduce more notation: ψ1 = ψ |̃I andψ2 = ExtĨI (ϕ)−ψ1. Thenψ1 andψ2 are finite harmonic

functions on Ĩ . Note that ExtĨI (ϕ) = ExtĨI∩Iϕ (ϕ). On the one hand, we have ExtĨI∩Iϕ (ϕ) =
ψ1 +ψ2. On the other hand, ϕ = ψ1 +ψ2 on I ∩ Iϕ, hence

ExtĨI∩Iϕ (ϕ) = ExtĨI∩Iϕ (ψ1) + ExtĨI∩Iϕ (ψ2) ≤ ψ1 +ψ2,

where the last inequality follows from Remark 3.3.13. Therefore, ψ1 = ExtĨI∩Iϕ (ψ1) and

ψ2 = ExtĨI∩Iϕ (ψ2). Let us rewrite the first equality in the form ψ |̃I = ExtĨI∩Iϕ (ψ). Then we see
that the function ψ |Iϕ is not equal to zero identically. Now indecomposability of ϕ yields
that ϕ and ψ are proportional on Iϕ. Thus, from ψ |̃I = ExtĨI∩Iϕ (ψ) and ExtĨI (ϕ) = ExtĨI∩Iϕ (ϕ)
it follows that ExtΓI (ϕ) and ψ are proportional on Ĩ .

Therefore, maps ResΓI and ExtΓI are well defined and the following identity ResΓI ◦ExtΓI =
id holds. The remaining identity ExtΓI ◦ResΓI = id immediately follows from Lemma 3.3.12.
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Remark 3.3.15. Let I1 ⊂ I2 be ideals of Γ . Then ExtΓI2 ◦ExtI2I1 = ExtΓI1 .

Proposition 3.3.16. [14, p.35 Lemma 12] Let Γ be a graded graph. If ϕ ∈ Hex(Γ ), then the
support supp(ϕ) is a primitive coideal.

Proof. Let λ1,λ2 ∈ supp(ϕ). Then Lemma 3.3.12 yields

ϕ(λ2) = lim
N→∞

∑
µ∈Γ λ1

|µ|=N

dim(λ2,µ)ϕ(µ),

where Γ λ1 = {ν ∈ Γ | ν ≥ λ1}. Then the inequality ϕ(λ2) > 0 implies that there exists a vertex
µ such that µ ≥ λ1,λ2 and ϕ(µ) , 0. Thus, by virtue of Proposition 3.2.6 the coideal supp(ϕ)
is primitive.

3.4 Multiplicative branching graphs

In this section we recall some basic notions related to multiplicative branching graphs [10,
14]. For such graphs we prove a theorem, which states that some multiplicative branching
graphs admit no strictly positive semifinite indecomposable harmonic functions [31, Theo-
rem 8 p.146]. We call this theorem Wassermann’s no-go theorem. We also prove a semifinite
analog of the Vershik-Kerov ring theorem [15, Theorem p.144].

Definition 3.4.1. [14, p.40] A branching graph Γ is called multiplicative, if there exists an
associative Z≥0-graded R-algebra A =

⊕
n≥0

An, A0 = R with a distinguished basis of homoge-

neous elements {aλ}λ∈Γ , that satisfy the following conditions

1) degaλ = |λ|

2) a� is the identity in A

3) For â =
∑
ν∈Γ1

κ(�,ν)aν and any vertex λ ∈ Γ we have â · aλ =
∑

µ:λ↗µ
κ(λ,µ)aµ.

Moreover, we assume that the structure constants of A with respect to the basis {aλ}λ∈Γ
are non-negative.

Let (Γ ,κ) be the multiplicative graph that is related to an algebra A and a basis {aλ}λ∈Γ .
We denote the quotient algebra A

/
(â− 1) by R, the canonical homomorphism A ↠ R by

[ · ] and the positive cone in R, consisting of all elements that can be written in the form∑
λ∈Γn

cλ[aλ] for a large enough n and some cλ ≥ 0, by R+. The correspondence [λ] 7→ [aλ] de-

fines an isomorphism of R-vector spaces K0(Γ ) ∼−→R. The image of the cone K+
0 (Γ ) ⊂ K0(Γ )

under this map coincides with R+.
Consider the positive cone A+ ⊂ A, consisting of all elements of A, that can be written as

a linear combination of basis elements aλ with non-negative coefficients. For any semifinite
harmonic function ϕ ∈H(Γ ) we may speak about the R≥0-linear map ϕ : A+→R≥0 ∪ {+∞}.

Let us now formulate the Vershik-Kerov ring theorem [15, Theorem p.134], see also [7,
Proposition 8.4].

Definition 3.4.2. A harmonic function ϕ on a branching graph Γ is called normalized if
ϕ(�) = 1.
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Theorem 3.4.3 (Vershik-Kerov Ring Theorem). [15, Theorem p.134] A finite normalized har-
monic function ϕ on the multiplicative branching graph Γ is indecomposable if and only if the
corresponding functional on A is multiplicative: ϕ (a · b) = ϕ (a) ·ϕ (b) ∀a,b ∈ A.

The following semifinite analog of the ring theorem holds.

Theorem 3.4.4. [15, Theorem p.144] For any semifinite indecomposable harmonic function ϕ
on the multiplicative branching graph Γ there exists a finite normalized indecomposable harmonic
function ψ, such that ϕ(a · b) = ψ(a) ·ϕ(b) for any a,b ∈ A+ with ϕ(b) < +∞.

Proof. Note that
(â)n =

∑
ν∈Γn

dim(ν) · aν .

Then ϕ
(
(â)n aµ

)
= ϕ

(
aµ

)
≥ dim(λ)ϕ

(
aλ · aµ

)
and ϕλ (µ) = ϕ

(
aλaµ

)
is a finite harmonic func-

tion on the finiteness ideal of ϕ. Since the restriction of ϕ to its finiteness ideal is an in-
decomposable harmonic function (see Lemma 3.3.12) it follows that there exists cλ ∈ R≥0

such that ϕ
(
aµ · aλ

)
= cλϕ(aµ). We set ψ(λ) = cλ by definition. One can check that ψ is a

harmonic function and that the functional on A defined by ψ is multiplicative. Then the
Vershik-Kerov ring theorem implies that ψ is indecomposable.

From Theorem 3.4.4 it follows that the subspace I = span
R

(aλ | λ : ϕ(λ) < +∞) ⊂ A is an
ideal for any semifinite indecomposable harmonic function ϕ. However, the proof shows
that this is true for an arbitrary harmonic function ϕ without any additional assumptions.

The following theorem imposes some restrictions on multiplicative graphs that possess
strictly positive indecomposable semifinite harmonic functions, [31, Theorem 8 p.146].

Theorem 3.4.5 (Wassermann’s no-go theorem). If aλaµ , 0 for any λ,µ ∈ Γ , then the graph Γ

admits no strictly positive semifinite indecomposable harmonic functions.

Proof. Let ϕ be a strictly positive indecomposable semifinite harmonic function. The ar-
gument given at the beginning of the proof of Theorem 3.4.4 shows that ϕµ defined by
ϕµ(λ) = ϕ

(
aλaµ

)
is a finite harmonic function on Γ , while ϕ(µ) < +∞. Furthermore, the

following inequality holds ϕ ≥ const ·ϕµ. Next, observe that ϕµ is strictly positive, since
aλaµ , 0 and structure constants of A are non-negative with respect to the basis {aλ}λ∈Γ .
Therefore, ϕ and ϕµ are proportional. Thus, ϕ is finite.

Corollary 3.4.6. [3, p. 371, the paragraph just before Theorem 3.5] If Γ admits a strictly positive
indecomposable finite harmonic function, then it possesses no strictly positive semifinite indecom-
posable harmonic functions.

Proof. Suppose that ϕ is a strictly positive indecomposable finite harmonic function and
aλaµ = 0 for some λ,µ ∈ Γ . Then ϕ(aλaµ) = ϕ(0) = 0 and Theorem 3.4.3 yields ϕ(λ)ϕ(µ) = 0,
which contradicts the strict positivity of ϕ.

3.5 Boyer’s Lemma

In this section we discuss a very useful claim related to arbitrary harmonic functions on a
graded graph. It allows one to determine the finiteness ideal of an indecomposable semifi-
nite harmonic function in several concrete situations. This principle, which was first ob-
served by R. P. Boyer and published only in 1983, see [4, Theorem 1.10, Example p.212],
had been also stated by Wassermann [31, Boyer’s Lemma p.149] two years before the pa-
per [4]. We formulate and prove a slightly involved generalization of Wassermann’s concise
argument. It turns out to be a combinatorial analog of [4, Theorem 1.10]. After that we
consider a couple of examples, which immediately follow from the general claim. Boyer’s
Lemma from [31] becomes a part of the first example, see Remark 3.5.6.
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3.5.1 General statement

Recall that the set of vertices lying on the n-th level of a graded graph Γ is denoted by Γn.
Below we work with arbitrary harmonic functions and do not assume that they are finite or
semifinite.

Definition 3.5.1. A harmonic function ϕ is called semifinite at a vertex λ, if ϕ(λ) = +∞ and
there exists a sequence {an}n≥1 ⊂ K+

0 (Γ ) such that

• an ≤K λ,

• ϕ(an) < +∞,

• lim
n→+∞

ϕ(an) = +∞.

The sequence {an}n≥1 will be called an approximating sequence for the vertex λ.

Observation 3.5.2. If ϕ is semifinite at a vertex λ, then for any vertex µ ≤ λ the function ϕ
is semifinite at the vertex µ too.

Proposition 3.5.3 (Boyer’s lemma). Let Γ be a graded graph and ϕ be a harmonic function on it.
Assume that I ⊂ Γ is an ideal, J = Γ \I is the corresponding coideal and we are given a fixed vertex
λ ∈ J . Suppose that there exists a vertex λ′ ∈ I and a positive real number βλ such that ϕ(λ′) > 0
and for any vertex η ∈ I lying on a large enough level the following inequality holds∑

µ∈J
dim(λ,µ)κ(µ,η) ≥ βλdim(λ′,η). (3.7)

Then ϕ(λ) = +∞. If in addition ϕ is semifinite at λ′, then ϕ is semifinite at λ as well.

Remark 3.5.4. Condition (3.7) is a refinement of some condition on the "number" of paths
in the graph Γ , which admits a graphical interpretation, see condition (3.14) from Corollary
3.5.5 and Figure 3.2.

Proof of Proposition 3.5.3. Let us multiply (3.7) by η ∈ K0(Γ ) and sum over all η ∈ Im for some
m. Then we get ∑

η∈Im
µ∈J

dim(λ,µ)κ(µ,η) · η ≥K
∑
η∈Im

βλdim(λ′,η) · η = βλ ·λ′,

where the both sides of the inequality are considered as elements of K0(Γ ) and the partial
order on K0(Γ ) defined by the cone K+

0 (Γ ) is denoted by ≥K .
The only thing we are left to do is to reproduce the original argument of A. Wassermann

[31, p.149, the proof of Boyer’s Lemma] in our context. Let us set n = |λ|, then

λ =
∑

η∈Γn+N+1

dim(λ,η)η ≥K
∑

η∈In+N+1

dim(λ,η)η (3.8)

for any N .
Note that, if λ ∈ Jn and η ∈ In+N+1, then

dim(λ,η) =
N∑
l=0

∑
η∈In+l+1
µ∈Jn+l

dim(λ,µ)κ(µ,η)dim(η,η). (3.9)
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Substitute (3.9) into (3.8): λ ≥K
N∑
l=0

∑
η∈In+l+1
µ∈Jn+l

∑
η∈In+N+1

dim(λ,µ)κ(µ,η)dim(η,η)η.

Now sum over η:

λ ≥K
N∑
l=0

∑
η∈In+l+1
µ∈Jn+l

dim(λ,µ)κ(µ,η)η ≥K N · βλλ′ (3.10)

Compare (3.10) with (1.10.1) and (1.10.2) from [4, Theorem 1.10].
Thus, (3.10) yieldsϕ(λ) ≥ βλϕ(λ′)·N for anyN henceϕ(λ) = +∞. Moreover, the sequence

aN =N · βλλ′ is an approximating sequence for the vertex λ if ϕ(λ′) < +∞.

3.5.2 Example 1

Consider graded graphs (Γ1,κ1) and (Γ2,κ2) and suppose that we are given a graded map
Γ1 → Γ2, λ 7→ λ′. Let (Γ ,κ) be one more graded graph that satisfies the following require-
ments:

(Γ )n = (Γ1)n ⊔ (Γ2)n−1 for n ≥ 1, (Γ )0 = (Γ1)0 . (3.11)

κ (λ,µ) = κ1 (λ,µ) , if λ,µ ∈ Γ1,

κ (λ,µ) = κ2 (λ,µ) , if λ,µ ∈ Γ2.
(3.12)

κ (λ,µ) = 0, if λ ∈ Γ2,µ ∈ Γ1. (3.13)

Condition (3.13) means that Γ2 is an ideal of Γ . For simplicity one can assume that edges
from Γ1 to Γ2 can go from λ to λ′ only, see Figure 3.1. But we will not use this later on.

λ

λ′

Γ1 Γ2

Figure. 3.1: Example of the branching rule for Γ .

Corollary 3.5.5. Assume that the map ν 7→ ν′ is surjective and let λ ∈ (Γ1)n be a fixed vertex.
Suppose that for any large enough l and any vertex µ ∈ (Γ1)n+l the following inequality holds

dim1(λ,µ)κ(µ,µ′) ≥ dim2(λ′,µ′), (3.14)

where dim1(·, ·) and dim2(·, ·) are shifted dimensions for (Γ1,κ1) and (Γ2,κ2). Now let ϕ be a
harmonic function on Γ with ϕ(λ′) > 0. Then ϕ(λ) = +∞.

Proof. Recall that Γ2 is an ideal of Γ . Therefore, we may apply Proposition 3.5.3 for I = Γ2,
J = Γ1, and βλ = 1. For that we bound from below the sum in the left hand side of (3.7) in
terms of one of its summands and use (3.14).

Remark 3.5.6. If the map λ 7→ λ′ is a branching graph morphism, that is κ(λ,µ) = κ(λ′,µ′),
then condition (3.14) means that κ(µ,µ′) ≥ 1. If the equality holds identically, then we obtain
the original formulation of Boyer’s Lemma [31, p.149, Boyer’s lemma].
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Γ1 Γ2

λ

λ′

µ µ′

Figure. 3.2: Condition (3.14) means that the "number" of paths from λ to µ′, that go through
µ, is not smaller then the "number" of arbitrary paths from λ′ to µ′.

3.5.3 Example 2

Let us consider graded graphs (Γ1,κ1) and (Γ2,κ2) and suppose that we are given a graded
map Γ1 → Γ2, λ 7→ λ′. Let (Γ ,κ) be another graded graph, that satisfies (Γ )n = (Γ1)n ⊔
(Γ2)n for n ≥ 0, and conditions (3.12), (3.13). Recall that the last condition means that Γ2
is an ideal of Γ . For simplicity one can assume that vertices λ ∈ Γ1 and µ ∈ Γ2 are joined by
an edge if and only if λ′↗ µ, as it is shown on Figure 3.3.

λ λ′

Γ1 Γ2

Figure. 3.3: Example of the branching rule for Γ .

Corollary 3.5.7. Suppose that the map λ 7→ λ′ is surjective. Let λ ∈ Γ1 be a fixed vertex and
assume that the following inequalities hold for any µ ∈ Γ1

κ(λ,µ) ≥ κ(λ′,µ′),
κ(λ,µ′) ≥ κ(λ′,µ′).

Then ϕ(λ) = +∞ for any harmonic function ϕ on Γ such that ϕ(λ′) > 0.

Proof. Let us take I = Γ2, J = Γ1, and βλ = 1 in Proposition 3.5.3 and prove that the following
inequality holds

∑
µ∈Γ1

dim(λ,µ)κ(µ,η) ≥ dim(λ′,η) for any η ∈ Γ2. In order to do so, we check

that dim(λ,µ) ≥ dim(λ′,µ′) and write∑
µ∈Γ1

dim(λ,µ)κ(µ,η)

dim(λ′,η)
≥

∑
µ∈Γ1

dim(λ′,µ′)κ(µ′,η)

dim(λ′,η)
≥

∑
µ∈Γ2

dim(λ′,µ)κ(µ,η)

dim(λ′,η)
= 1.

For each of these inequalities we have used that λ 7→ λ′ is surjective.

Remark 3.5.8. One can obtain an exhaustive list of indecomposable semifinite harmonic
functions on the Macdonald graph, which corresponds to the simplest Pieri rule for the
Macdonald symmetric functions, by applying Wassermann’s method. This list turns out to
be very similar to that for the Young graph, see [31, Theorem 9 on page 150]. For instance,
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the space of classification parameters is an obvious (q, t)-deformation of the parameter space
for the Young graph. Namely, we should deform only the continuous part of the data in the
same way as it is deformed in the case of finite harmonic functions, replacing the ordinary
Thoma simplex with the (q, t)-deformed Thoma simplex, see Theorem 1.4 and Proposition
1.6 from [18], while the discrete part remains the same. This result easily follows from the
original argument of A. Wassermann, Theorem 1.4 and Proposition 1.6 from [18], Proposi-
tion 3.2.6, Theorem 3.3.14, Proposition 3.3.16, and Corollary 3.5.5. Instead of using The-
orem 3.4.5 we must apply a similar argument obtained with the help of a trick due to K.
Matveev [18, §6, Proof of Proposition 1.6].
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Chapter 4

Direct product of branching graphs

4.1 Summary in French

Dans cette section, nous décrivons les fonctions harmoniques finies indécomposables sur
le produit de graphes de branchement en termes de fonctions harmoniques sur les mul-
tiplicateurs. On peut considérer le résultat principal de cette sous-section, Proposition
4.2.6, comme une généralisation du théorème de de Finetti bien connu [2, Théorème 5.1,
Théorème 5.2]. La différence entre la Proposition 4.2.6 (cas n = 2) et le théorème de de
Finetti est que nous remplaçons les deux côtés du triangle de Pascal, qui correspondent
à deux plongements Z ↪→ Z ⊕Z le long des première et deuxième composantes, par des
graphes de branchement arbitraires. Remarquons que le cas où l’un de ces graphes est une
ligne composée d’un seul sommet à chaque niveau est déjà connu, voir [30, Théorème 2.8].
Notez que dans ce théorème, on ne considère que des fonctions harmoniques strictement
positives (ou, de manière équivalente, des mesures centrales) au lieu de fonctions arbitraires.

Donnons maintenant une motivation pour la définition principale de la présente section.
Si A et B sont des Z≥0-algèbres graduées unitales sur R, alors leur produit tensoriel (sur
R) est également une algèbre graduée unitale. Plus précisément, si A =

⊕
n≥0

An, A0 = R et

B =
⊕
n≥0

Bn, B0 = R, alors A⊗
R
B =

⊕
k≥0

(A⊗
R
B)k, où

(A⊗
R
B)k =

⊕
n,m≥0:
n+m=k

An ⊗R Bm.

De plus, 1A⊗B = 1A ⊗ 1B et (A⊗
R
B)0 = R · 1A⊗B. Ce fait simple, ainsi que la Définition

3.4.1, nous motivent à considérer le produit direct de deux graphes gradués.
Ici, nous décrivons les fonctions harmoniques finies et semi-finies sur le produit direct

de graphes de branchement en termes de telles fonctions sur les facteurs.

Définition 4.1.1. Par produit direct de graphes gradués (Γ1,κ1) et (Γ2,κ2), nous entendons le
graphe gradué (Γ1 × Γ2,κ1 ×κ2), où

(Γ1 × Γ2)k =
⊔
n,m≥0:
n+m=k

(Γ1)n × (Γ2)m

et

(κ1 ×κ2)
(
(λ1,µ1); (λ2,µ2)

)
=


κ1(λ1,λ2), si µ1 = µ2,

κ2(µ1,µ2), si λ1 = λ2,

0 sinon.

Exemple 4.1.2. Le triangle de Pascal est le produit direct de deux copies de Z≥0.
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Nous notons par FHex(Γ ) l’ensemble de toutes les fonctions harmoniques finies normal-
isées indécomposables sur un graphe de branchement Γ .

Théorème 4.1.3. Soient Γ1 et Γ2 des graphes de branchement et ϕ une fonction harmonique
finie normalisée indécomposable sur Γ1 × Γ2, c’est-à-dire ϕ ∈ FHex(Γ1 × Γ2). Alors un seul des
cas suivants peut se produire:

1) Il existe ϕ1 ∈ FHex(Γ1), ϕ2 ∈ FHex(Γ2) et des nombres réels positifs w1,w2 tels que
w1 +w2 = 1 et

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ). (4.1)

De plus, ces ϕ1, ϕ2, w1,w2 sont uniques.

2) Il existe ϕ1 ∈ FHex(Γ1) telle que

ϕ(λ,µ) =

0, si µ ,�,
ϕ1(λ), si µ = �.

(4.2)

3) Il existe ϕ2 ∈ FHex(Γ2) telle que

ϕ(λ,µ) =

0, si λ ,�,
ϕ2(µ), si λ = �.

(4.3)

De plus, chaque fonction harmonique sur Γ1×Γ2 de la forme 1), 2) ou 3) est indécomposable.

Remarque 4.1.4. On peut facilement voir que (4.2) et (4.3) sont des cas particuliers de (4.1)
correspondant à w2 = 0 et w1 = 0. Nous formulons le Théorème 4.1.3 sous cette forme pour
simplifier la comparaison avec le Théorème 4.1.5.

Théorème 4.1.5. Soient Γ1 et Γ2 des graphes gradués et ϕ ∈Hex(Γ1× Γ2), alors un seul des cas
suivants peut se produire :

1) Il existe ϕ1 ∈Hex(Γ1), ϕ2 ∈Hex(Γ2) et des nombres réels positifs w1,w2 avec w1 +w2 = 1
tels que

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ).

De plus, ces ϕ1 et ϕ2 sont définis de manière unique à une constante multiplicative
près.

2) Il existe ϕ1 ∈Hex(Γ1) et ν2 ∈ Γ2 tels que

ϕ(λ,µ) =


0, si µ ≰ ν2,

+∞, si µ < ν2,

ϕ1(λ), si µ = ν2.

3) Il existe ν1 ∈ Γ1 et ϕ2 ∈Hex(Γ2) tels que

ϕ(λ,µ) =


0, si λ ≰ ν1,

+∞, si λ < ν1,

ϕ2(µ), si λ = ν1.

De plus, chaque fonction harmonique sur Γ1×Γ2 de la forme 1), 2) ou 3) est finie ou semi-finie
et indécomposable.
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4.2 Finite harmonic functions

In this section we describe indecomposable finite harmonic functions on the product of
branching graphs in terms of harmonic functions on the multipliers. One can treat the main
result of this subsection, Proposition 4.2.6, as a generalization of the well known de Finetti
theorem [2, Theorem 5.1, Theorem 5.2]. The difference between Proposition 4.2.6 (n = 2
case) and the de Finetti theorem is that we replace two sides of the Pascal triangle, which
correspond to two embeddings Z ↪→Z⊕Z along the first and the second components, with
arbitrary branching graphs. Remark that the case when one of these graphs is a line consist-
ing of one vertex at each level has been already known, see [30, Theorem 2.8]. Note that in
this theorem one should consider only strictly positive harmonic functions (or, equivalently,
central measures) instead of arbitrary ones.

Let us provide some motivation for the main definition of the present section. If A and
B are unital Z≥0-graded R-algebras, then their tensor product (over R) is a unital graded
algebra too. Namely, if A =

⊕
n≥0

An, A0 = R and B =
⊕
n≥0

Bn, B0 = R, then A⊗
R
B =

⊕
k≥0

(A⊗
R
B)k,

where
(A⊗

R
B)k =

⊕
n,m≥0:
n+m=k

An ⊗R Bm.

Furthermore, 1A⊗B = 1A ⊗1B and (A⊗
R
B)0 = R ·1A⊗B. This simple fact, together with Defi-

nition 3.4.1, motivates us to consider the direct product of two graded graphs.

Definition 4.2.1. By the direct product of graded graphs (Γ1,κ1) and (Γ2,κ2) we mean the
graded graph (Γ1 × Γ2,κ1 ×κ2), where

(Γ1 × Γ2)k =
⊔
n,m≥0:
n+m=k

(Γ1)n × (Γ2)m

and

(κ1 ×κ2)
(
(λ1,µ1); (λ2,µ2)

)
=


κ1(λ1,λ2), if µ1 = µ2,

κ2(µ1,µ2), if λ1 = λ2,

0 otherwise.

The next lemma ties together some properties of the direct product of graded graphs.
The subset Γλ = {µ ∈ Γ | µ ≤ λ} of a graded graph Γ is called the principle coideal associated

to λ ∈ Γ .

Lemma 4.2.2. Let Γ1 and Γ2 be graded graphs.

1) A graph Γ1 × Γ2 is primitive if and only if Γ1 and Γ2 are primitive.

2) Let λ,λ′ ∈ Γ1 and µ,µ′ ∈ Γ2. Then

dim
(
(λ,µ), (λ′,µ′)

)
=

(
|λ′ | − |λ|+ |µ′ | − |µ|

|λ′ | − |λ|

)
dim1 (λ,λ′)dim2 (µ,µ′) ,

where
(
n
k

)
denotes the binomial coefficient and dim1(·, ·), dim2(·, ·) are shifted dimensions

for Γ1 and Γ2, see (3.2) on page 27.

Proof. The first assertion follows from Proposition 3.2.6 immediately and the second one is
obvious.
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Lemma 4.2.3. Let Γ1 and Γ2 be graded graphs. If J ⊂ Γ1 × Γ2 is a saturated primitive coideal, then
it is of the form J = J1 × J2 for some coideals J1 ⊂ Γ1 and J2 ⊂ Γ2 such that

• J1, J2 are saturated and primitive or

• J1 is principle1 and J2 is saturated and primitive or

• J1 is saturated and primitive and J2 is principle.

Proof. We can form J1 and J2 via natural projections Γ1×Γ2→ Γ1 and Γ1×Γ2→ Γ2. Then clearly
J ⊂ J1 × J2, but primitivity of J implies that J1 × J2 ⊂ J . Thus, J = J1 × J2. It is easy to check
that J1 and J2 are coideals satisfying the following condition: if λ,µ ∈ J1 (or ∈ J2), then there
exists ν ∈ J1 (or ∈ J2) such that ν ≥ λ,µ. By Proposition 3.2.6 it remains to show that J1 (and
similarly J2) is either saturated or principal. Let us check that if J1 is not saturated then it is
principal. If J1 is not saturated then there exists a vertex λ ∈ J1 such that none of the vertices
lying above λ belongs to J1. Let µ be an arbitrary vertex µ ∈ J1. Then the property above
states that there exists a vertex ν ∈ J1 such that ν ≥ λ,µ. But this implies that ν = λ. Thus, J1
is principal.

Remark 4.2.4. Note that the direct product of multiplicative graphs is multiplicative too.
For the direct product of two multiplicative graphs the corresponding algebra is the tensor
product of the initial algebras, the distinguished basis is the tensor product of the bases and
the element that was denoted by â in Definition 3.4.1 is â⊗

R
1B +1A⊗R b̂, where â and b̂ are

the same elements for the initial algebras. Thus, we can define the direct product of finitely
many graded graphs and the product of multiplicative graphs is multiplicative as well.

Recall that a harmonic function ϕ on a branching graph Γ is called normalized if ϕ(�) =
1.

Remark 4.2.5. Let Γ1, . . . ,Γn be branching graphs and let ϕ1, . . . ,ϕn be finite normalized har-
monic functions on them. Then the function ϕ : Γ1 × . . .× Γn→R≥0 defined by

ϕ(λ1, . . . ,λn) = w|λ1|
1 . . .w|λn|n ϕ1(λ1) . . .ϕn(λn) (4.4)

is harmonic and normalized whenever w1, . . . ,wn ∈R≥0 and w1 + . . .+wn = 1.

Notation. Let (Γ ,κ) be a branching graph. We denote by FHex(Γ ) the set of all finite nor-
malized indecomposable harmonic functions on Γ and by FH◦ex(Γ ) the subset of all strictly
positive functions.

Proposition 4.2.6. Let Γ1, . . . ,Γn be branching graphs and ∆0
n be the interior of the n − 1-

dimensional simplex, i.e. ∆0
n = {(w1, . . . ,wn) | w1 + . . .+wn = 1, wi > 0}.

1) There is a bijection between FH◦ex(Γ1 × . . .× Γn) and FH◦ex(Γ1)× . . .×FH◦ex(Γn)×∆0
n defined by

(4.4).

2) There is a bijection between FHex(Γ1 × . . .× Γn) and
⊔

I : I⊂{1,2,...,n}
I,�

∆0
|I | ××

i∈I
FHex(Γi).

More precisely, for any harmonic function ϕ ∈ FHex(Γ1 × . . . × Γn) there exist a non-empty set
I ⊂ {1,2, . . . ,n}, harmonic functions ϕi ∈ FHex(Γi), which are indexed by i ∈ I , and w ∈ ∆0

|I |
such that for any n-tuple of vertices λ1 ∈ Γ1, . . . ,λn ∈ Γn the following identity holds

ϕ (λ1, . . . ,λn) =


∏
i∈I
w|λi |i ϕi(λi), if λj = �, ∀j ∈ {1,2, . . . ,n}\I,

0 otherwise.

Moreover, these I , ϕi and w are uniquely defined.
1We say that a coideal of a graded graph Γ is principal if it is of the form {λ ∈ Γ | λ ≤ µ} for some µ ∈ Γ .
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Example 4.2.7. Let us take Γ1 = . . . = Γn = Z≥0 and assume that all edges are simple and
go from k to k + 1 for k ≥ 0. Then FH◦ex(Γi) = FHex(Γi) is a singleton and Γ1 × . . . × Γn is
the Pascal pyramid Pn. Then from Proposition 4.2.6 it follows that FH◦ex(Pn) = ∆0

n and
FHex(Pn) =

⊔
I : I⊂{1,2,...,n}

I,�

∆0
|I | = ∆n, which is the n− 1-dimensional simplex.

Remark 4.2.8. For multiplicative graphs Proposition 4.2.6 is a straightforward consequence
of the Vershik-Kerov ring theorem (Theorem 3.4.3). Namely, we should apply this theorem
to the following simple fact

Hom
(
A1 ⊗R . . .⊗RAn,R

)
=

n×
i=1

Hom(Ai ,R) ,

where Hom stands for the set of algebra homomorphisms. Indeed, to prove the first part of
the proposition we note that there are two mutually inverse maps

Φ→ : FH◦ex(Γ1)× . . .×FH◦ex(Γn)×∆0
n −→ FH◦ex(Γ1 × . . .× Γn),

(ϕ1, . . . ,ϕn,w) 7→
(
ϕ1 ◦ rw1

)
⊗ . . .⊗

(
ϕn ◦ rwn

)
;

and

Φ← : FH◦ex(Γ1 × . . .× Γn) −→ FH◦ex(Γ1)× . . .×FH◦ex(Γn)×∆0
n,

ϕ 7→
(
ϕ |A1

◦ r−1
w1
, . . . ,ϕ |An ◦ r

−1
wn ,w

)
.

Here ru denotes the automorphism of a graded algebra defined on homogeneous ele-
ments as a 7→ udegaa, and ϕ |Ai is the restriction of ϕ : A1 ⊗ . . . ⊗An → R to the subalgebra
1⊗i−1 ⊗ Ai ⊗ 1⊗n−i ≃ Ai . Furthermore, the n-tuple w = (w1, . . . ,wn) that appears in the def-
inition of the map Φ← has the following form wi = ϕ

(
1⊗i−1 ⊗ â(i) ⊗ 1⊗n−i

)
. Recall that the

element â(i) ∈ Ai defines the branching rule for Γi , see Definition 3.4.1.

Remark 4.2.9. Proposition 4.2.6 gives us the following view on Kerov’s construction [7, §4].
Comultiplication provides us a linear map K0(Γ )→ K0(Γ × . . .× Γ︸     ︷︷     ︸

n

) and we take the composite

of this map with an indecomposable harmonic function on Γ × . . .× Γ︸     ︷︷     ︸
n

to obtain an indecom-

posable harmonic function on Γ .

We prove the first part of Proposition 4.2.6 for n = 2 only. The case n > 2 can be dealt
with in the same manner.

In the case n = 2 the proposition can be restated in a more friendly from.

Theorem 4.2.10. Let Γ1 and Γ2 be branching graphs and ϕ be a normalized indecomposable finite
harmonic function on Γ1× Γ2, i.e. ϕ ∈ FHex(Γ1× Γ2). Then only one of the following situations can
occur:

1) There existϕ1 ∈ FHex(Γ1), ϕ2 ∈ FHex(Γ2) and real positive numbersw1,w2 withw1+w2 = 1
such that

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ). (4.5)

Moreover, these ϕ1, ϕ2, w1,w2 are uniquely defined.

2) There exist ϕ1 ∈ FHex(Γ1) such that

ϕ(λ,µ) =

0, if µ ,�,
ϕ1(λ), if µ = �.

(4.6)
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3) There exist ϕ2 ∈ FHex(Γ2) such that

ϕ(λ,µ) =

0, if λ ,�,
ϕ2(µ), if λ = �.

(4.7)

Furthermore, every harmonic function on Γ1 × Γ2 of the form 1), 2), or 3) is indecomposable.

Remark 4.2.11. One can readily see that (4.6) and (4.7) are partial cases of (4.5) correspond-
ing to w2 = 0 and w1 = 0. We formulate Theorem 4.2.10 in this form to simplify the compar-
ison with Theorem 4.3.1.

Theorem 4.2.10 immediately follows from the two lemmas below.

Lemma 4.2.12. Let Γ1 and Γ2 be branching graphs and ϕ be an indecomposable finite normalized
harmonic function on their product, i.e. ϕ ∈ FHex(Γ1 × Γ2). Then ϕ is either of the form 1), or 2),
or 3) from Theorem 4.2.10.

Proof. Recall that by T(Γ ) we denote the space of infinite paths in a branching graph Γ start-

ing at �. By [10, p.60, Theorem] there exists a path τ =
(
(�,�), (λ′1,µ

′
1), (λ′2,µ

′
2), . . .

)
∈ T(Γ1×Γ2)

such that for any λ ∈ Γ1, µ ∈ Γ2

ϕ(λ,µ) = lim
N→+∞

dim
(
(λ,µ), (λ′N ,µ

′
N )

)
dim

(
(λ′N ,µ

′
N )

) . (4.8)

Next, we can write

dim
(
(λ,µ), (λ′N ,µ

′
N )

)
dim

(
(λ′N ,µ

′
N )

) =

(
|λ′N |

)↓|λ|
·
(
|µ′N |

)↓|µ|
(
|λ′N |+ |µ

′
N |

)↓(|λ|+|µ|) · dim1

(
λ,λ′N

)
dim1

(
λ′N

) · dim2

(
µ,µ′N

)
dim2

(
µ′N

) ,
where x↓k = x(x − 1) . . . (x − k + 1).

Passing to appropriate subsequences of vertices in τ we may assume that the following
limits exist

lim
N→+∞

dim1

(
λ,λ′N

)
dim1

(
λ′N

) , lim
N→+∞

dim2

(
µ,µ′N

)
dim2

(
µ′N

) , lim
N→+∞

|λ′N |
|λ′N |+ |µ

′
N |
, lim
N→+∞

|µ′N |
|λ′N |+ |µ

′
N |
.

Denote them by ϕ1(λ), ϕ2(µ), w1, and w2. Suppose that w1 and w2 are non-zero, this situa-
tion corresponds to the case 1) in Theorem 4.2.10. Then it is easy to check that ϕ1 and ϕ2
are harmonic functions on Γ1 and Γ2. They are indecomposable, since ϕ is indecomposable.

Suppose now that w1 = 0. Then w2 = 1 and one can check that ϕ2 is a harmonic function
on Γ2 as before. Equation (4.8) turns into (4.7) from the case 3) in Theorem 4.2.10. By the
same argument as before ϕ2 is indecomposable. The case w2 = 0 can be dealt with similarly;
it corresponds to the case 2) in Theorem 4.2.10.

It is clear that the functions defined in cases 2) and 3) in Theorem 4.2.10 are indecompos-
able, if so are ϕ1 and ϕ2. Below we prove that the function defined in 1) is indecomposable
as well, if ϕ1 and ϕ2 are indecomposable.

For any branching graph Γ we endow FHex(Γ ) with the pointwise convergence topology,
in which it is a metrizable space, since Γ is countable.
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Lemma 4.2.13. Let Γ1 and Γ2 be branching graphs, ϕ1 and ϕ2 be some finite normalized harmonic
functions on them, and w1 and w2 be some positive real numbers subject to w1 +w2 = 1. Then the
harmonic function ϕ on the graph Γ1 × Γ2 defined by (4.5) is indecomposable if and only if ϕ1 and
ϕ2 are indecomposable.

Proof. If ϕ is indecomposable, then functions ϕ1 and ϕ2 can not be decomposable by the
very definition ofϕ. Suppose thatϕ1 andϕ2 are indecomposable. By Choquet’s theorem, see
[22] or [21, Theorem 9.2], there exists a unique probability measure P on the set FHex(Γ1×Γ2),
representing ϕ in the following sence. For any λ1 ∈ Γ1 and λ2 ∈ Γ2 we have

ϕ(λ1,λ2) =
∫

FHex(Γ1×Γ2)

ψ(λ1,λ2)P (dψ). (4.9)

From Lemma 4.2.12 it follows that indecomposable harmonic functions on Γ1 × Γ2 are of the
following three kinds

1) ψ(λ1,λ2) = u |λ1|
1 u |λ2|

2 ψ1(λ1)ψ2(λ2) for some real positive numbers u1,u2 with u1 +u2 = 1
and some ψ1 ∈ FHex(Γ1), ψ2 ∈ FHex(Γ2).

2) ψ(λ1,λ2) =

ψ1(λ1), if λ2 = �,
0 otherwise

for some ψ1 ∈ FHex(Γ1).

3) ψ(λ1,λ2) =

ψ2(λ2), if λ1 = �,
0 otherwise

for some ψ2 ∈ FHex(Γ2).

Note that in the first case we can recover these u1,u2,ψ1, and ψ2 as follows

u1 =
∑
|λ1|=1

dim(λ1)ψ(λ1,�), u2 = 1−u1,

ψ1(λ1) =
1

u |λ1|
1

·ψ(λ1,�), ψ2(λ2) =
1

u |λ2|
2

·ψ(�,λ2).

The second and third cases above can be considered as a part of the first one with u1 = 1
and u1 = 0 respectively. Then we have a natural map from FHex(Γ1 × Γ2) to

M := [0,1]×FHex(Γ1)×FHex(Γ2)
/
∼,

where (u1,ψ1,ψ2) ∼ (ũ1, ψ̃1, ψ̃2) if and only if either u1 = ũ1 = 0, ψ2 = ψ̃2 or u1 = ũ1 = 1,
ψ1 = ψ̃1. It is readily seen that the map FHex(Γ1 × Γ2)→M is injective and continuous.

Keeping all the previous discussion in mind we multiply (4.9) by dim(λ1) and sum over
all λ1 liying on a common level N of the graph Γ1, and use the fact that∑

|λ1|=N
dim(λ1)ψ1(λ1) = 1.

Next we do the same thing for λ2. Then we see by de Finetti’s theorem, see Theorems 5.1
and 5.2 in [2], that the projection of the measure P to the first coordinate is concentrated at
the point w1, hence the integration in (4.9) must run over the set of harmonic functions of
the first type 1). Then the factors w|λ1|

1 w|λ2|
2 and u |λ1|

1 u |λ2|
2 in the resulting expression cancel

out, and, with some abuse of notation, we can write

ϕ1(λ1)ϕ2(λ2) =
∫

FHex(Γ1)×FHex(Γ2)

ψ1(λ1)ψ2(λ2)P (dψ). (4.10)
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Taking λ2 = � in (4.10), we see that the measure P must be concentrated only at ϕ1. Analo-
gously, P is concentrated only at ϕ2. Thus, P is a delta measure on FHex(Γ1 × Γ2).

Next proposition follows immediately from the proof of Lemma 4.2.13.

Proposition 4.2.14. Consider the space

[0,1]×FHex(Γ1)×FHex(Γ2)
/
∼,

where the equivalence relation ∼ is defined by (w,ϕ1,ϕ2) ∼ (w̃, ϕ̃1, ϕ̃2) if and only if either w =
w̃ = 0, ϕ2 = ϕ̃2 or w = w̃ = 1, ϕ1 = ϕ̃1.

The following maps

[0,1]×FHex(Γ1)×FHex(Γ2)
/
∼ −→ FHex(Γ1 × Γ2)

and
(0,1)×FH◦ex(Γ1)×FH◦ex(Γ2) −→ FH◦ex(Γ1 × Γ2),

defined by (w,ϕ1,ϕ2) 7→ ϕ, where ϕ is given by (4.5) with w1 = w and w2 = 1 −w, are homeo-
morphisms.

4.3 Semifinite harmonic functions

Our main goal is to prove the following semifinite analog of Theorem 4.2.10.

Theorem 4.3.1. Let Γ1 and Γ2 be graded graphs andϕ ∈Hex(Γ1×Γ2), then only one of the following
situations can occur:

1) There exist ϕ1 ∈Hex(Γ1), ϕ2 ∈Hex(Γ2) and real positive numbers w1,w2 with w1 +w2 = 1
such that

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ). (4.11)

Moreover, these ϕ1 and ϕ2 are defined uniquely up to multiplicative constants.
We agree that 0 · (+∞) = 0.

2) There exist ϕ1 ∈Hex(Γ1) and ν2 ∈ Γ2 such that

ϕ(λ,µ) =


0, if µ ≰ ν2,

+∞, if µ < ν2,

ϕ1(λ), if µ = ν2.

(4.12)

3) There exist ν1 ∈ Γ1 and ϕ2 ∈Hex(Γ2) such that

ϕ(λ,µ) =


0, if λ ≰ ν1,

+∞, if λ < ν1,

ϕ2(µ), if λ = ν1.

(4.13)

Furthermore, every harmonic function on Γ1 × Γ2 of the form 1), 2), or 3) is finite or semifinite,
and indecomposable.

The ideal of a graded graph Γ generated by a vertex λ will be denoted by Γ λ, i.e. Γ λ =
{µ ∈ Γ | µ ≥ λ}. Such ideals will be called principal ideals.
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Lemma 4.3.2. Let Γ1 and Γ2 be primitive graded graphs. If ϕ ∈ H◦ex(Γ1 × Γ2), then there exist
ϕ1 ∈H◦ex(Γ1), ϕ2 ∈H◦ex(Γ2) and unique real positive numbers w1,w2 with w1 +w2 = 1 such that

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ). (4.14)

Moreover, ϕ1 and ϕ2 are defined uniquely up to multiplicative constants.

Proof. Let us show that, if ϕ is given by (4.14), then numbers w1,w2 are uniquely defined
and ϕ1, ϕ2 are uniquely defined up to multiplicative constants. Assume that

ϕ(λ,µ) = w|λ|1 w
|µ|
2 ϕ1(λ)ϕ2(µ) = w̃1

|λ|w̃2
|µ|ϕ̃1(λ)ϕ̃2(µ). (4.15)

The finiteness ideal of ϕi coincides with that of ϕ̃i , i = 1,2. Then we will assume that all
further considerations will be performed inside the finiteness ideal of ϕ, which is equal to
the direct product of finiteness ideals of ϕ1 and ϕ2. It makes possible to rewrite (4.15) as(

w1

w̃1

)|λ|
ϕ1(λ)
ϕ̃1(λ)

=
(
w̃2

w2

)|µ|
ϕ̃2(µ)
ϕ2(µ)

. (4.16)

The left-hand side of (4.16) depends only on λ, but not on µ and the right-hand side
depends only on µ, but not on λ. Then both sides of (4.16) are constant, hence

ϕ̃1(λ) = c1 ·
(
w1

w̃1

)|λ|
ϕ1(λ) (4.17)

ϕ̃2(µ) = c2 ·
(
w2

w̃2

)|µ|
ϕ2(µ)

for some real positive constants c1, c2.
Next, ϕ̃1 is a harmonic function with respect to the multiplicity function κ1, but on

the right-hand side of (4.17) we have a harmonic function with respect to the multiplicity

function
w1

w̃1
·κ1. Hence w̃1 = w1. Thus, ϕ1 and ϕ̃1 are proportional. Similarly we show that

w̃2 = w2 and that ϕ2 and ϕ̃2 are proportional.
Let ϕ ∈ H◦ex(Γ1 × Γ2) and take any (λ,µ) ∈ Γ1 × Γ2 such that ϕ(λ,µ) < +∞. This pair (λ,µ)

will be fixed till the end of the proof. By Theorem 4.2.10 we have

ϕ(ν1,ν2)
ϕ(λ,µ)

= w|ν1|−|λ|
1 w

|ν2|−|µ|
2 ψ1(ν1)ψ2(ν2)

for any ν1 ≥ λ, ν2 ≥ µ, some numbers w1,w2 ∈ R>0 with w1 +w2 = 1, and some finite strictly
positive normalized harmonic functions ψ1 and ψ2 on Γ λ1 and Γ

µ
2 .

Let us denote by ϕ1 and ϕ2 the extensions of ψ1 and ψ2 to primitive graded graphs Γ1
and Γ2 respectively provided by Theorem 3.3.14. We will show that for any ν1 ∈ Γ1 and any
ν2 ∈ Γ2

ϕ(ν1,ν2) ≥ ϕ(λ,µ) ·w|ν1|−|λ|
1 w

|ν2|−|µ|
2 ϕ1(ν1)ϕ2(ν2), (4.18)

Then the claim follows from the indecomposability of ϕ.
First, we write

ϕ(ν1,ν2) = lim
N→+∞

∑
λ1∈Γ1,λ2∈Γ2 :
|λ1|+|λ2|=N

dim
(
(ν1,ν1), (λ1,λ2)

)
ϕ(λ1,λ2) =

lim
N→+∞

∑
n1,n2 :
n1+n2=N

∑
λ1∈Γ1,λ2∈Γ2 :
|λ1|=|ν1|+n1,
|λ2|=|ν2|+n2

(
N
n1

)
dim1(ν1,λ1)dim2(ν2,λ2)ϕ(λ1,λ2).
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Omitting all terms except those for which λ1 ≥ λ and λ2 ≥ µ, we obtain

ϕ(ν1,ν2) ≥ ϕ(λ,µ) ·w|ν1|−|λ|
1 w

|ν2|−|µ|
2 ×

lim
N→+∞


∑
n1,n2 :
n1+n2=N

(
N
n1

)
wn1

1 w
n2
2

∑
λ1∈Γ λ1 :
|λ1|=|ν1|+n1

dim1(ν1,λ1)ψ1(λ1)
∑

λ2∈Γ
µ
2 :

|λ2|=|ν2|+n2

dim2(ν2,λ2)ψ2(λ2)


.

Next, we omit all summands except those which satisfy |n1 −w1N | < N 2/3. Note that the ex-
pressions

∑
λ1∈Γ λ1 :
|λ1|=|ν1|+n1

dim1(ν1,λ1)ψ1(λ1) and
∑

λ2∈Γ
µ
2 :

|λ2|=|ν2|+n2

dim2(ν2,λ2)ψ2(λ2) are non-increasing

in n1 and n2. Hence we can bound ϕ(ν1,ν2) from below

ϕ(ν1,ν2) ≥ ϕ(λ,µ) ·w|ν1|−|λ|
1 w

|ν2|−|µ|
2 lim

N→+∞


∑
n1,n2 :
n1+n2=N

|n1−w1N |<N2/3

(
N
n1

)
wn1

1 w
n2
2

∑
λ1∈Γ λ1 :

|λ1|=|ν1|+⌊w1N−N2/3⌋

dim1(ν1,λ1)ψ1(λ1)
∑

λ2∈Γ
µ
2 :

|λ2|=|ν2|+⌊w2N−N2/3⌋

dim2(ν2,λ2)ψ2(λ2)

 ,
where ⌊·⌋ is the floor function.

Finally, by the central limit theorem we have

lim
N→+∞

∑
n1,n2 :
n1+n2=N

|n1−w1N |<N2/3

(
N
n1

)
wn1

1 w
n2
2 = 1.

Thus, (4.18) follows immediately from the very definition of ϕ1 and ϕ2 and their strict
positivity.

Now we would like to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. Let us check that expressions on the right hand sides of (4.11), (4.12),
and (4.13) define finite or semifinite harmonic functions on Γ1×Γ2. Functions from (4.12) and
(4.13) are from Hex(Γ1 × Γ2) by Boyer’s lemma, see the proof below. To see that the function
from (4.11) is in Hex(Γ1 × Γ2) note that a harmonic function Φ is semifinite if and only if it is
not finite and the following identity holds (see [24, Proposition 3.7])

Φ(λ) = lim
N→∞

∑
µ : µ≥λ, |µ|=N
0<ϕ(µ)<+∞

dim(λ,µ)Φ(µ). (4.19)

To prove this equality for the function from (4.11) we use an argument with the central
limit theorem similar to that which was used in the proof of Lemma 4.3.2. Namely, we
assume that ϕ(λ,µ) = +∞ and bound the right hand side of the equality (4.19) from below
to see that it equals +∞.
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It is clear that the functions defined by (4.12) and (4.13) are indecomposable, if the func-
tions ϕ1 and ϕ2 are. We will check that the function from (4.11) is neccesarily indecompos-
able, if ϕ1 and ϕ2 are indecomposable. For this we note that supp(ϕ) = supp(ϕ1)× supp(ϕ2)
and the direct product of two primitive graded graphs is primitive as well. Thus, by Propo-
sition 3.3.16 supp(ϕ) is a primitive graded graph. It is enough to check that ϕ is indecom-
posable being restricted to supp(ϕ), hence further considerations will be performed inside
supp(ϕ). From Theorem 3.3.14 and Lemma 4.2.13 applied to any principal ideal of supp(ϕ)
that lies in the finiteness ideal of ϕ, it follows that ϕ is indecomposable being restricted to
any principal ideal of supp(ϕ) that lies in the finiteness ideal. Recall that a principal ideal
is an ideal generated by some vertex µ, i.e {λ | λ ≥ µ}. Thus, if ϕ ≥ ψ, then ψ = cI · ϕ on
any principal ideal I ⊂ supp(ϕ) that lies in the finiteness ideal of ϕ, where cI is a positive
constant. Finally, we remark that in a primitive graph every two ideals have a non-empty
intersection. Thus, cI does not depend on I and ϕ is indecomposable on supp(ϕ).

Now we will prove that every harmonic function ϕ ∈ Hex(Γ1 × Γ2) is of the form (4.11),
(4.12) or (4.13). Note that, ifϕ ∈Hex(Γ1×Γ2), then by Proposition 3.3.16 and Lemma 4.2.3 the
support suppϕ is of the form J1×J2, where either J1 and J2 are primitive saturated coideals of
Γ1 and Γ2 respectively, or one of them is saturated and primitive and another one is principal.
The first case of the theorem corresponds to the first case mentioned above and follows from
Lemma 4.3.2 immediately. Let us assume that J1 ⊆ Γ1 is a saturated primitive coideal and
J2 ⊂ Γ2 is a principal coideal corresponding to some vertex ν2 ∈ Γ2. Then ϕ(λ,µ) = 0 if
µ ≰ ν2. Consider the ideal of J1 × J2 consisting of all pairs (λ,ν2) ∈ J1 × J2, whose second
component equals exactly ν2. Obviously, it is isomorphic to J1 as a Bratteli diagram. Let
us denote this ideal by (J1 × J2)(−,ν2). Then Theorem 3.3.14 provides us a bijection between
strictly positive finite and semifinite indecomposable harmonic functions on J1 × J2 and on
(J1 × J2)(−,ν2) ≃ J1. The last thing which remains to show is to indicate how we should extend
harmonic functions from the ideal (J1 × J2)(−,ν2) to the whole graph J1 × J2. If J2 = {ν2} is
a singleton, then the extension is trivial, otherwise it is sufficient to take any ν′ such that
ν′ ↗ ν2 and prove that ϕ(λ,ν′) = +∞, λ ∈ J1. Consider the ideal (J1 × J2)(−,ν′) of J1 × J2
consisting of all pairs (λ,µ) ∈ J1 × J2, whose second component µ is greater than or equal to
ν′, that is µ = ν′ or µ = ν2. Then

(J1 × J2)(−,ν′) = J1 × {ν′} ⊔ J1 × {ν2},

and J1×{ν2} is an ideal of (J1 × J2)(−,ν′), and there is a natural map J1×{ν′} → J1×{ν2}, (λ,ν′) 7→
(λ,ν2) which, for a trivial reason, is an isomorphism of Bratteli diagrams. Take λ ∈ J1. Using
the notation from Lemma 3.5.3, we set Γ = (J1 × J2)(−,ν′), I = J1 × {ν2}, β(λ,ν′) = κ2(ν′,ν2) and
consider (λ,ν2) as λ′ from the lemma. Then the left hand side of (3.7) consists of only
one summand and the inequality turns into the equality, hence Lemma 3.5.3 implies that
ϕ(λ,ν′) = +∞ for any ν′↗ ν2. By assumption ϕ is semifinite at (λ,ν2), hence it is semifinite
at (λ,ν′) as well.

Remark 4.3.3. One can deal with the cases 2) and 3) from Theorem 4.3.1 applying the
Vershik-Kerov ergodic method, see [10, Theorem on p. 60]. This argument turns out to
be simplier then that presented above. The reason why we use Boyer’s lemma is that it guar-
antees that the functions defined by the right hand sides of (4.12) and (4.13) are finite or
semifinite for any ϕ1 ∈Hex(Γ1), ϕ2 ∈Hex(Γ2).

4.3.1 Semifinite Vershik-Kerov ring theorem

There is a well known analog of the Vershik-Kerov ring theorem for semifinite indecom-
posable harmonic functions on a multiplicative branching graph Theorem 3.4.4, see [15,
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Theorem p.134], [7, Proposition 8.4], and [15, Theorem p.144]. We apply it to the case of
the direct product of two multiplicative graphs (Corollary 4.3.4).

We can associate a finite indecomposable harmonic function to any harmonic function
ϕ ∈Hex(Γ ) on a multiplicative graph Γ . We will denote it by ϕf in, i.e. ϕf in = ϕ, if ϕ is finite
and ϕf in = ψ, where ψ is given by Theorem 3.4.4, if ϕ is semifinite.

Corollary 4.3.4. Let (Γ1,A, {aλ}λ∈Γ1
) and (Γ2,B, {bµ}µ∈Γ2

) be multiplicative graphs, and ϕ ∈
Hex(Γ1 × Γ2). Then

• in case 1) of Theorem 4.3.1

ϕf in(λ,µ) = w|λ|1 w
|µ|
2 ϕ

f in
1 (λ)ϕf in2 (µ);

• in case 2) of Theorem 4.3.1

ϕf in(λ,µ) =

0, if µ ,�,

ϕ
f in
1 (λ), if µ = �;

• in case 3) of Theorem 4.3.1

ϕf in(λ,µ) =

0, if λ ,�,

ϕ
f in
2 (µ), if λ = �.

4.4 Slow graphs and inverse symmetric semigroups

Let N be the representation of natural numbers as a half-line Bratteli diagram, with a single
vertex on each level and a single edge between adjacent levels. Recall that for a graded
graph Γ the corresponding slow graph can be defined as a product N× Γ . Such graphs were
defined and studied in [30]. Their name comes from the following natural description of
the path space for a slow graph. Informally, we take any path in the initial graph, and
at each step we either move along the path, or stay at the same vertex once again. More
formally, let T(Γ ) stand for the space of infinite paths in Γ starting at �. We take any path
(�↗ λ1↗ λ2↗ . . .) ∈ T(Γ ) and an increasing sequence of positive numbers i1 < i2 < · · · , and
construct a path(

(0,�)↗ (1,�)↗ . . . (i1,�)↗ (i1,λ1)↗ (i1 + 1,λ1)↗ . . .

(i2,λ1)↗ (i2,λ2)↗ . . .
)
∈ T(N× Γ ).

Indecomposable finite harmonic functions are known for the slow graphs.

Theorem 4.4.1. [30] Let Γ be a branching graph and Φ be a normalized indecomposable finite
harmonic function on N× Γ , i.e. Φ ∈ FHex(N× Γ ). Then only one of the following two situations
can occur:

1) either there exist ϕ ∈ FHex(Γ ) and a real number w, 0 < w ≤ 1, such that

Φ(n,µ) = (1−w)nw|µ|ϕ(µ)

(and ϕ and w are uniquely defined);

2) or Φ(n,µ) = 1 if µ = �, and Φ(n,µ) = 0 otherwise.
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Furthermore, every such harmonic function on N× Γ is indecomposable.

Remark 4.4.2. Theorem 4.4.1 easily follows from Theorem 4.2.10. The current statement
differs slightly from the original one in [30] — the degeneration of the harmonic functions
for w = 0 was not mentioned there. Namely the case 2) in Theorem 4.4.1 can be obtained
from 1) if we set w = 0, but in this case there is no dependence on ϕ. Moreover, the notation
in [30] differs slightly from the notation in the present paper. Namely, there the vertices of
the n-th level of the corresponding slow graph were denoted by {(n,λ)|λ ∈ Γ , |λ| ≤ n} instead
of (N× Γ )n = {(k,λ)|λ ∈ Γ , k + |λ| = n}.

Indecomposable semifinite harmonic functions for a slow graph can be easily described
as a corollary to Theorem 4.3.1. Some simplifications are due to the fact that there is only
one (trivial) normalized indecomposable finite harmonic function on N and no semifinite
ones.

Corollary 4.4.3. Let Γ be a graded graph and Φ be an indecomposable semifinite harmonic func-
tion on N× Γ , then only one of the following situations can occur:

1) There exist an indecomposable semifinite harmonic function ϕ on Γ and a real number w,
0 < w ≤ 1 such that

Φ(n,µ) = (1−w)nw|µ|ϕ(µ).

Moreover, ϕ and w are uniquely defined.

2) There exist ν ∈ Γ , ν ,� and a real positive number c such that

Φ(n,µ) =


0, if µ ≰ ν,

+∞, if µ < ν,
c, if µ = ν.

3) There exist m ∈N, m ≥ 1 and ϕ ∈Hex(Γ ) such that

Φ(n,µ) =


0, if n > m,
+∞, if n < m,
ϕ(µ), if n =m.

Furthermore, every such harmonic function on N× Γ is semifinite and indecomposable.

A natural example of a slow graph is given by the representation theory of inverse sym-
metric semigroups Rn. The semigroup Rn can be defined as the semigroup of partial bijections
of the set {1,2, . . . ,n}, and it naturally contains the symmetric group Sn (the group of bijec-
tions of the same set {1,2, . . . ,n}). Recall that the Bratteli diagram correspodning to the chain
of the group algebras {C[Sn]} is the Young graph Y (see e.g. [20]). The semigroup algebras
C[Rn] are semisimple, and the Bratteli diagram correspodning to the chain of the semigroup
algebras {C[Rn]} is given by the slow graph N×Y (see [8]). Description of the semifinite har-
monic functions in this case was one of the motivations for the present section.

Recall that indecomposable finite normalized harmonic functions on Y are given by the
celebrated Thoma’s theorem [29, 13], and semifinite traces on Y were described in [13, The-
orem 3 on p.27] and [31, Theorem 9 on p.150].

Theorem 4.4.4. [29, 13] Every indecomposable finite normalized harmonic function on the
Young graph Y is of the form ϕα,β , where α and β are sequences of non-increasing real non-

negative numbers α = (α1 ≥ α2 ≥ . . . ≥ 0) and β = (β1 ≥ β2 ≥ . . . ≥ 0) subject to
∞∑
i=1
αi +

∞∑
j=1
βj ≤ 1.
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The function ϕα,β is defined as follows ϕα,β(λ) = s◦λ(α|β), where s◦λ(α|β) is the image of the Schur

function sλ under the map Sym→R, p1 7→ 1, pn 7→
∞∑
i=1
αni + (−1)n−1

∞∑
j=1
βnj for n ≥ 2.

Theorem 4.4.5. [13, Theorem 3 on p.27, 31, Theorem 9 on p.150] Every indecomposable
semifinite harmonic function on the Young graph Y is proportional to some ϕνα,β , where ν is
a non-empty Young diagram and α and β are tuples of non-increasing real positive numbers

α = (α1 ≥ α2 ≥ . . . ≥ αk > 0) and β = (β1 ≥ β2 ≥ . . . ≥ βl > 0) subject to
k∑
i=1
αi +

l∑
j=1
βj = 1. The

function ϕνα,β is defined as follows

ϕνα,β(λ) =


0, if λ < Yνk,l ,
+∞, if λ ∈ Yνk,l but λ does not cover the flange ν,
ϕα,β(λf ), if λ ∈ Yνk,l and λ covers the flange ν,

where

• Y
ν
k,l is the coideal of the Young graph formed by all Young diagrams that can be fitted into

the infinite hook consisting of k infinite rows and l infinite columns with an added flange of
the form ν to the corner of the hook, see Figure 4.1;

• ϕα,β is the finite indecomposable harmonic function on Y associated to (α,β);

• λf = λ− ν is the Young diagram λ with the flange ν removed.

ν

k

l

Figure. 4.1: An example of Yνk,l for k = 4, l = 3 and ν = (5,5,2,2,1).
White rows and columns represent infinite rows and columns.

Now we can easily combine Theorem 4.4.4 and Theorem 4.4.5 with Corollary 4.4.3 to
describe semifinite harmonic functions on N×Y .

Proposition 4.4.6. Each semifinite indecomposable harmonic function on N × Γ is proportional
to Φν

α,β,w, Φk
α,β , Φν,k

α,β , or Φµ, where

1) Φν
α,β,w is defined by

Φν
α,β,w(n,λ) = (1−w)nw|λ|ϕνα,β(λ)

for some w ∈ (0,1] and a semifinite indecomposable harmonic function ϕνα,β on the Young
graph Y from Theorem 4.4.5;
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2) Φk
α,β and Φ

ν,k
α,β are defined by

Φk
α,β(n,λ) =


0, if n > k,
+∞, if n < k,
ϕα,β(λ), if n = k,

Φ
ν,k
α,β(n,λ) =


0, if n > k,
+∞, if n < k,
ϕνα,β(λ), if n = k,

for some ϕα,β from Theorem 4.4.4, ϕνα,β from Theorem 4.4.5, and an integer k > 0;

3) Φµ is defined by

Φµ(n,λ) =


0, if λ ≰ µ,

+∞, if λ < µ,
1, if λ = µ,

for some µ ∈ Y , µ ,�.

4.5 Inverse of the map from Proposition 4.2.14

This section is devoted to one simple (and almost elementary) fact about finite harmonic
functions on the direct product of two branching graphs, see Proposition 4.5.1 and Proposi-
tion 4.5.3 below. From now on we consider arbitrary finite harmonic functions on the direct
product of two branching graphs, but not only indecomposable ones.

Let Γ1 and Γ2 be branching graphs, ϕ1, ϕ2 be finite normalized harmonic functions on
them and let w1,w2 ∈R>0 be such that w1 +w2 = 1. Then

ϕ(λ1,λ2) = w|λ1|
1 w|λ2|

2 ϕ1(λ1)ϕ2(λ2) (4.20)

is a finite normalized harmonic function on Γ1 × Γ2
2.

Proposition 4.5.1. Keeping the aforementioned notation we can recover ϕ1, ϕ2, w1 and w2 from
ϕ by the following formulas

wk1
1 w

k2
2 =

∑
|λ1|=k1,|λ2|=k2

dim1(λ1)dim2(λ2)ϕ(λ1,λ2), (4.21)

ϕ1(λ1) =
∞∑
n2=0

(
n2 + |λ1| − 1

n2

) ∑
|λ2|=n2

dim2(λ2)ϕ(λ1,λ2), (4.22)

ϕ2(λ2) =
∞∑
n1=0

(
n1 + |λ2| − 1

n1

) ∑
|λ1|=n1

dim1(λ1)ϕ(λ1,λ2). (4.23)

Proof. Identities (4.22) and (4.23) reduce to

1

(1− y)k+1
=
∞∑
n=0

(
n+ k
k

)
yn (4.24)

and (4.21) is obvious.

Remark 4.5.2. Formulas (4.21), (4.22), and (4.23) may be viewed as an inverse of the map
from Proposition 4.2.14. Compare them with the first two formulas from the proof of The-
orem 2.8 in [30].

2Note that for any finite harmonic function f on the Pascal graph P the function ϕ defined by ϕ(λ1,λ2) =
f (|λ1|, |λ2|)ϕ1(λ1)ϕ2(λ2) is harmonic on Γ1 × Γ2.
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Remark that the right hand side of (4.21) defines a harmonic function on the Pascal graph
P for any finite normalized harmonic function ϕ on Γ1× Γ2. Proposition 4.5.1 shows that the
right hand sides of (4.22) and (4.23) define harmonic functions on Γ1 and Γ2, if ϕ is of the
form (4.20). In fact, more general claim holds.

Proposition 4.5.3. The functions on Γ1 and Γ2 defined by the right hand sides of (4.22) and (4.23)
are finite and harmonic for any finite normalized harmonic function ϕ on Γ1 × Γ2.

Proof 1. The statement is a trivial consequence of Proposition 4.2.14, Proposition 4.5.1, and
Choquet’s theorem [22, 21, Theorem 9.2].

Proof 2. One can prove this proposition using only elementary methods and de Finetti’s
Theorem, see Theorems 5.1 and 5.2 in [2]. The key observation is that the following expres-
sion ∑

|λ1|=k1,|λ2|=k2

dim1(λ1)dim2(λ2)ϕ(λ1,λ2) (4.25)

defines a harmonic function on the Pascal graph P for any finite harmonic function ϕ on
Γ1 × Γ2. Then by Theorem 5.1 from [2] (4.25) is a mixture of indecomposables. Next, from
the inequality

dim1(λ1)
∑
|λ2|=n2

dim2(λ2)ϕ(λ1,λ2) ≤
∑

|µ|=|λ1|,|λ2|=n2

dim1(µ)dim2(λ2)ϕ(µ,λ2),

identity (4.24) and the integral representation of (4.25), it follows that the expression de-

fined by the right hand side of (4.22) is finite and not exceeding
1

dim1(λ1)
. Let us denote it

by π1, i.e.

π1(λ) :=
∞∑
n2=0

(
n2 + |λ| − 1

n2

) ∑
|λ2|=n2

dim2(λ2)ϕ(λ,λ2) ≤
1

dim1(λ)
< +∞. (4.26)

To establish the harmonicity condition for π1 we prove the following identity by induc-
tion on k

π1(λ)−
∑
µ↘λ

κ1(λ,µ)π1(µ) =
∞∑
n2=k

(
n2 + |λ| − 1− k
|λ| − 1

) ∑
|λ2|=n2

dim2(λ2)ϕ(λ,λ2)−

∑
µ↘λ

∞∑
n2=k

(
n2 + |µ| − 1− k
|µ| − 1

) ∑
|λ2|=n2

dim2(λ2)ϕ(µ,λ2)

(4.27)

Finally, we recall that (
n2 + |λ| − 1− k
|λ| − 1

)
≤

(
n2 + |λ| − 1
|λ| − 1

)
,

hence each of the summands in (4.27) tends to 0 as k goes to +∞.

Remark 4.5.4. Take ϕ as in (4.20), then ψ1(λ) := ϕ(λ,�) is a finite harmonic function on
a branching graph (Γ1, κ̃1) that is similar to (Γ1,κ1) in the sense of Kerov, see Definition in
§4 from [11]. The multiplicity function of the new graph differs from κ1 by w1, see (4.20).
Below we prove that the same is true for an arbitrary finite harmonic function on Γ1 × Γ2.

We would like to generalize the key observation from the previous remark a bit. The
claim is that the following expression defines a harmonic function on the Pascal graph P for
any ν1 ∈ Γ1, ν2 ∈ Γ2, and any finite normalized harmonic function ϕ on Γ1 × Γ2

Πν1,ν2(k1, k2) :=
∑

|λ1|=|ν1|+k1,
|λ2|=|ν2|+k2

dim1(ν1,λ1)dim2(ν2,λ2)ϕ(λ1,λ2).
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Next by Theorem 5.1 from [2] it is represented by a probability measure, say P ν1,ν2 , on [0,1],
that is

Πν1,ν2(k1, k2) = ϕ(ν1,ν2)
∫

[0,1]
wk1

1 w
k2
2 P

ν1,ν2(dw).

Then by (4.24) the expression π1(λ) defined by (4.26) equals

ϕ(λ,�)
∫

[0,1]
w−|λ|1 P λ,�(dw).

Recall that it is finite for all λ ∈ Γ1.
Thus, the harmonicity condition for π1 implies that the function ψ1(λ) := ϕ(λ,�) is a

finite harmonic function on a branching graph that is similar to (Γ1,κ1) in the sense of Kerov.
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Chapter 5

The zigzag graph

5.1 Summary in French

Dans cette section, nous décrivons les fonctions harmoniques semi-finies sur le graphe en
zigzag et prouvons un analogue semi-fini du théorème de l’anneau de Vershik-Kerov pour
celui-ci.

Considérons les compositions (partitions ordonnées) de nombres naturels. Nous les
identifions avec les diagrammes en ruban, qui sont des diagrammes de Young imbriqués
connectés écrits selon la convention française et ne contenant pas de blocs de boîtes de taille
2 × 2. Une composition λ = (λ1, . . . ,λl) est identifiée avec le diagramme de Young en ruban
ayant λi boîtes dans la i-ème lignes. Par exemple, la seule composition de 1 est identifiée
avec □. Le nombre de boîtes dans λ est égal à |λ| = λ1 + . . . + λl . Nous considérons les dia-
grammes de Young en ruban comme des zigzags se déplaçant du coin supérieur gauche au
coin inférieur droit. Il existe une bijection entre les zigzags et les mots binaires.

Un mot binaire est un mot dans l’alphabet de deux symboles, + et −. Nous utiliserons les
conventions suivantes

n
+ = + . . .+︸︷︷︸

n

et n− = − . . .−︸︷︷︸
n

.

La bijection entre les zigzags et les mots binaires est la suivante. De gauche à droite,
nous lisons les symboles du mot binaire et ajoutons des cases au zigzag le plus simple □. Si
le symbole est +, nous ajoutons une case dans la direction horizontale vers la droite, et si le
symbole est −, nous ajoutons une case dans la direction verticale vers le bas. Par exemple,
le mot binaire −+ correspond au zigzag avec une case dans la première rangée et deux cases
dans la deuxième rangée. Le mot binaire correspondant à un zigzag λ sera noté bw(λ). Ainsi,
bw(□) est le mot binaire vide.

Chaque mot binaire peut être représenté de manière unique comme une réunion conséc-
utive de blocs avec des signes alternés. Par un bloc, nous entendons un uplet de symboles du

même signe. Par exemple, le mot +− 3
+ se divise en trois blocs, +, − et

3
+. Ainsi, un bloc peut

être positif ou négatif en fonction du signe des symboles. En ce qui concerne les zigzags, ces
blocs positifs et négatifs correspondent aux lignes et aux colonnes.

Par un cluster, nous entendons un symbole, + ou −, auquel est associée une multiplicité
positive formelle, qui peut être infinie. Nous disons qu’un cluster est infini, si sa multiplicité
est infinie, sinon nous disons que le cluster est fini. Un modèle est une collection ordonnée
de clusters alternés. De plus, nous supposons toujours qu’un modèle contient au moins un
cluster infini.

Définition 5.1.1. Un modèle est appelé fini, s’il ne contient pas de clusters finis, à l’exception
de ceux qui ne sont pas extrémaux et dont les deux voisins sont des clusters infinis du même
signe. Un modèle qui n’est pas fini sera appelé semi-fini.
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Soit t un modèle semi-fini. Par un cluster séparant de t, nous entendons un cluster d’un
seul symbole qui n’est pas un cluster extrémal de t et dont les deux voisins sont des clusters
infinis du même signe. Par le flanc zigzag de t, nous entendons un uplet de mots binaires
dont chaque élément est composé de clusters finis mais non séparants de t se tenant à prox-
imité. Le flanc zigzag sera noté fl(t).

Soit t un modèle semi-fini. Par une section de t, nous entendons une collection maximale
de clusters consécutifs formant un modèle fini. Remarquons que les mots du flanc zigzag
de t divisent t en sections.

Soit t un modèle arbitraire. Par tn, nous désignons le mot binaire qui est obtenu à partir
de t en remplaçant toutes les multiplicités infinies par le nombre naturel n. Alors le sous-
ensemble du graphe en zigzag Z(t) := {λ ∈ Z | bw(λ) < tn pour un certain n} consiste en tous
les zigzags (ou mots binaires) qui sont de la forme t.

Définition 5.1.2. Posons J(t) =
⋃
r Z(r) pour un modèle semi-fini t, où la réunion est prise sur

tous les r obtenus à partir de t en supprimant un seul symbole d’un cluster correspondant à
un bloc d’un mot binaire du flanc zigzag fl(t).

Supposons que t ait k sections t1, . . . , tk. Supposons que fl(t) = (a0, . . . , ak) et que la parti-
tion de t soit de la forme:

t = (a0, t1, a1, . . . , ak−1, tk , ak).

Si a0 ou ak est le mot binaire vide, nous l’ignorons dans tout ce qui suit.

Lemme 5.1.3. Si λ ∈ Z(t)\J(t), alors

bw(λ) = a0 ⊔ bw(λ(1))⊔ a1 ⊔ . . .⊔ bw(λ(k))⊔ ak

pour certains λ(i) ∈ Z(ti), qui sont alors uniques.

Définition 5.1.4. Par un modèle de croissance en zigzag semi-fini, nous entendons une paire
(t,w), où t est un gabarit semi-fini ayantm grappes infinies etw = (w1, . . . ,wm) est unm-uplet
de nombres réels positifs tels que w1 + . . .+wm = 1.

Soit (t,w) un modèle de croissance en zigzag semi-fini. La partition de t en sections nous
donne une partition de w

w = v1 ⊔ . . .⊔ vk ,
où chaque vi est un uplet de nombres réels provenant de w = (w1, . . . ,wm) correspondant aux
clusters infinis de ti .

Définition 5.1.5. Pour tout λ ∈ Z, nous définissons

ϕt,w(λ) =


Fλ(1)(v1) · . . . ·Fλ(k)(vk), si λ ∈ Z(t)\J(t),
+∞, si λ ∈ J(t),
0, si λ < Z(t).

où λ 7→ (λ(1), . . . ,λ(k)) est l’application donnée par le Lemme 5.1.3 et Fλ(i)(vi) est défini comme
suit :

Fµ(x1,x2, . . . ,xn) =
∑

x
|µ(1)|
1 x

|µ(2)|
2 . . .x

|µ(n)|
n , (5.1)

où la somme est prise sur les décompositions de µ en n zigzags µ(1), . . . ,µ(n) tels que µ(i) soit
une ligne, si le nombre xi ∈ {w1, . . . ,wm} correspond à un cluster positif de t, et µ(i) soit une
colonne, si xi correspond à un cluster négatif de t. Notons que certains de ces µ(i) peuvent
être vides.
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Notous que l’expression (5.1) provient d’une application multiplicative QSym→R, voir
la Section 5.4.1 sur la construction de Kerov.

Théorème 5.1.6.

1) Pour tout modèle de croissance en zigzag semi-fini (t,w), la fonction ϕt,w est une fonction
harmonique semi-finie indécomposable sur Z.

2) Toute fonction harmonique semi-finie indécomposable sur Z est proportionnelle à ϕt,w
pour certains modèles de croissance en zigzag semi-finis (t,w).1

3) Les fonctions ϕt,w sont distinctes pour des modèles de croissance en zigzag semi-finis
distincts (t,w).

Maintenant, nous aimerions formuler le théorème de l’anneau de Vershik-Kerov semi-
fini pour le graphe en zigzag. Pour cela, nous étendons nos fonctions harmoniques semi-
finis sur Z à span

R≥0
{Fλ | λ ∈ Z} ⊂ QSym, où {Fλ}λ∈Z sont les fonctions quasi-symétriques

fondamentales.

Théorème 5.1.7. Soit (t,w) un modèle de croissance en zigzag semi-fini. Pour tout µ ∈
Z(t)\J(t) et λ ∈ Z, nous avons

ϕt,w
(
FλFµ

)
= ϕw(Fλ)ϕt,w(Fµ),

où ϕw est la fonction harmonique finie sur Z définie par ϕw(λ) = Fλ(w), voir la formule (5.1)
ci-dessus.

5.2 Zigzag diagrams

In this section we recall a few notions on the zigzag graph [7], see also [28].
Let us consider compositions (ordered partitions) of natural numbers. We identify them

with the ribbon diagrams, which are connected skew Young diagrams written in the French
notation and containing no 2× 2 blocks of boxes. A composition λ = (λ1, . . . ,λl) is identified
with the ribbon Young diagram having λi boxes in the i-th row. For instance, the only one
composition of 1 gets identified with □. The number of boxes in λ equals |λ| = λ1 + . . .+λl .
We treat ribbon Young diagrams as zigzags crawling from the top-left corner to the bottom-
right corner. There is a bijection between the zigzags and the binary words, which we will
discuss in details.

A binary word is a word in the alphabet of two symbols, + and −. We will use the follow-
ing conventions

n
+ = + . . .+︸︷︷︸

n

and n− = − . . .−︸︷︷︸
n

.

The bijection between the zigzags and the binary words is as follows. From left to right
we read the symbols off the binary word and add boxes to the simplest zigzag □. If the
symbol is +, then we add a box in the horizontal direction to the right, and if the symbol is
−, then we add a box in the vertical direction to the bottom. For instance, the binary word
−+ corresponds to the zigzag with one box in the first row and two boxes in the second row.
The binary word corresponding to a zigzag λ will be denoted by bw(λ). So, bw(□) is the
empty binary word. The number of symbols in a binary word will be denoted by | · |, so
|bw(λ)| = |λ| − 1.

1Notous que l’ensemble des zéros de ϕt,w est toujours non vide. Cela est conforme au théorème de non-
existence de Wassermann en raison du fait que le graphe en zigzag est multiplicatif et que QSym ne contient
aucun diviseur de zéro, voir le Théorème 3.1.12.
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λ = bw(λ) = + +−−−+ ++

Figure. 5.1: A zigzag diagram and its binary word

For binary words a and b we write a↗ b if and only if |b| = |a|+ 1 and a can be obtained
from b by deleting a single symbol. For zigzags λ and µ we write λ ↗ µ if and only if
bw(λ)↗ bw(µ).

Definition 5.2.1. The zigzag graph Z is a graded graph Z =
⊔
n≥0

Zn, where Zn is the set of

all zigzags consisting of n boxes. By definition Z0 is a singleton Z0 = {�}. There is an edge
going from λ to µ if and only if λ↗ µ. All edges of Z are by definition simple.

�

Figure. 5.2: The first few levels of the zigzag graph Z

Let QSym be the algebra of quasisymmetric functions and {Fλ}λ∈Z be the fundamental
quasisymmetric functions defined in [6], see also [25, p. 357]. There is a Pieri-type rule for
this basis

F□Fλ =
∑
µ:λ↗µ

Fµ,

which reflects the branching rule for the zigzag graph, see [25, p. 482, Exercise 7.93] or [17,
p. 35, (3.13)].

5.3 Coideals of the zigzag graph

The algebra QSym contains no zero divisors, since it is a subalgebra of the formal power
series algebra in countably many variables. Then Theorem 3.4.5 implies that Z possesses
no strictly positive indecomposable semifinite harmonic functions. From Proposition 3.3.16
it follows that the support of any indecomposable semifinite harmonic function on Z is a
primitive saturated coideal. In this section we explicitly describe all primitive saturated
coideals of Z. Furthermore, we specify the coideals corresponding to the supports of the
finite indecomposable harmonic functions. By Proposition 3.4.6 none of these coideals can
be realised as the support of an indecomposable semifinite harmonic function.
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5.3.1 Saturated coideals of the zigzag graph

Each binary word can be uniquely represented as a consecutive union of blocks with alter-
nating signs. By a block we mean a tuple of symbols of the same sign. For instance, the word

+− 3
+ splits into three blocks, +, −, and

3
+. So, a block can be positive or negative depending

on the sign of symbols. As for zigzags, these positive and negative blocks correspond to
rows and columns.

Definition 5.3.1. By a cluster we mean a symbol, + or −, with an assigned to it formal positive
multiplicity, which may be infinite. We say that a cluster is infinite, if its multiplicity is
infinite, otherwise we say that the cluster is finite. A template is an ordered collection of
alternating clusters. Furthermore, we always assume that a template contains at least one
infinite cluster.

For instance,
∞
+∞− 3

+∞− is a template while
3
+2− is not.

Each template can be thought of as an infinite zigzag consisting of finite number of pos-
sibly infinite rows and columns. Infinite rows and columns correspond to infinite clusters
of this template. The infinite zigzag corresponding to the template t will be denoted by z(t),
see Figure 5.3.

Figure. 5.3: The infinite zigzag z(t) for the template

t = 1−
∞
+∞− 1

+ 1−
∞
+ 2−

∞
+ 1− 1

+ 2−
∞
+∞− 1

+∞−.

White strips of boxes represent infinitely long rows and columns while grey boxes represent
zigzags corresponding to finite clusters of t.

To every template t we associate a coideal Z(t) of the zigzag graph, which is by definition
of the form Zτ for some infinite path τ , see the paragraph above Proposition 3.2.6. In order
to define this path τ , we replace infinite rows and columns in the infinite zigzag z(t) with
long enough (but finite) rows and columns. So, we obtain a sequence of increasing zigzags.
Then τ is any path in the zigzag graph that goes through all these zigzags. Equivalently, τ is
any path that goes through all zigzags corresponding to the binary words obtained from t by
replacing infinite clusters with long enough (but finite) blocks. Any such path τ completely
"fills" the infinite zigzag z(t) that is, starting from some point, τ looks like a tuple of rows
and columns, some of which grow infinitely large while others stay frozen; the frozen rows
and columns correspond to finite clusters of t. Note that coideals Z(t1) and Z(t2) coincide
if and only if templates t1 and t2 coincide. Below it will be useful sometimes to identify a
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template t with the corresponding coideal Z(t). Moreover, it will be convenient to view an
infinite zigzag as a sequence of growing finite zigzags.

Proposition 5.3.2. Each proper primitive saturated coideal of the zigzag graph is of the form Z(t)
for some template t, which is uniquely defined.

Proof. Let J be a proper saturated primitive coideal of the zigzag graph. From Proposition
3.2.6 it follows that there exists a path τ such that J = Zτ . Since J is proper, it follows that
the number of blocks in binary words corresponding to zigzags from the path τ is uniformly
bounded along the path. Then we form a template t in the following way. Bounded blocks
of binary words from τ correspond to finite clusters of t, and unbounded blocks correspond
to infinite clusters.

5.3.2 Templates and ideals of QSym

For a template t we consider the following linear subspace It = span
R

(Fλ | λ < Z(t)) of QSym.
Note that It is a graded ideal of QSym, due to FλFµ ∈ span

R
(Fν | ν ≥ λ,µ), see. [17, p. 35,

(3.13)].

Observation 5.3.3. Let t1, . . . , tk be some templates. Then Z (t1)× . . .×Z (tk) is a multiplicative
graph, which algebra is span

R

(
Fλ(1) ⊗ . . .⊗Fλ(k) | λ(i) ∈ Z (ti)

)
= QSym

/
It1
⊗ . . .⊗QSym

/
Itk

, see
Definition 4.2.1.

5.4 Zero sets of finite harmonic functions

From Proposition 3.3.16 it follows that the support of a finite indecomposable harmonic
function on the zigzag graph is a primitive coideal. If this coideal is proper, then by Propo-
sition 5.3.2 it corresponds to a template. Below we specify which finite indecomposable
harmonic functions have non-empty zero sets and for them we explicitly describe the corre-
sponding templates.

5.4.1 Kerov’s construction

Recall the definition of finitary oriented paintbox, see Definition 5.2 from [7].

Definition 5.4.1. A finitary oriented paintbox is a pair (w+,w−) of disjoint open subsets of
the unit interval (0,1), each comprised of finitely many subintervals and such that the total
Lebesgue measure of w+ and w− equals 1. The symbolW0 stands for the set of all such pairs.

Lengths of intervals in w = (w+,w−) ∈ W0 will be denoted by wi . We agree that the
intervals are ordered from left to right and w1 denotes the length of the leftmost interval.
We say that an interval of w is positively oriented if it belongs to w+ and we say that an
interval is negatively oriented if it belongs to w−.

Kerov’s construction produces a finite indecomposable harmonic function ϕw on the
zigzag graph out of any finitary oriented paintbox w ∈W0, see [7, p. 13-18]. Let us briefly
recall this procedure.

For any zigzag λ we set by definition

ϕw(λ) = Fλ(w),

where
Fλ(w) = (ψ1 ⊗ . . .⊗ψm) ◦

(
rw1
⊗ . . .⊗ rwm

)
◦∆(m) (Fλ) , λ ∈ Z (5.2)

and

61



• m is the number of intervals in w;

• ∆(m) : QSym→QSym⊗m is the m-th iteration of the comultiplication ∆ in QSym;

• rt is the automorphism of the graded algebra QSym, defined by rt (Fλ) = t|λ|Fλ;

• ψi = ψ+, if wi is positively oriented and ψi = ψ−, if wi is negatively oriented, where

ψ+(Fλ) =

1, if λ is a row,
0 otherwise,

ψ−(Fλ) =

1 , if λ is a column,
0 otherwise.

Let us consider all splittings of the zigzag λ into m zigzags λ(1), . . . ,λ(m) such that λ(i)
is a row, if the interval wi is positively oriented, and λ(i) is a column, if wi is negatively
oriented. Note that some of these λ(i) may be empty.

Proposition 5.4.2. [7, Proposition 5.3] The following equality holds

Fλ(w) =
∑

w
|λ(1)|
1 w

|λ(2)|
2 . . .w

|λ(m)|
m ,

where the sum is taken over all splittings of λ mentioned above.

Let us denote byW the set of pairs of disjoint open subsets of the unit interval. Note that
W0 is a subset of W .

Theorem 5.4.3. [7, Theorem 7.5] There is a bijective correspondence w 7→ ϕw between elements
of w ∈W and indecomposable finite harmonic functions on the zigzag graph. For finitary oriented
paintboxes this correspondence is defined by Kerov’s construction.

For any finitary oriented paintbox w ∈W0 we denote by tw the template obtained from w

by replacing positively and negatively oriented intervals with symbols
∞
+ and ∞− respectively

and inserting between any two neighbor infinite symbols of the same type a symbol of the
opposite type.

Proposition 5.4.4. Let w ∈W . Then supp(ϕw) =

Z(tw), if w ∈W0,

Z, otherwise.

Proof. Suppose that the finitary oriented paintbox w consists of m intervals. Then Proposi-
tion 5.4.2 implies that ϕw(λ) > 0 if and only if λ can be represented as a consecutive union
of m rows and columns taken in the order proposed by the orientations of intervals of w.
Thus, ϕw(λ) > 0 if and only if λ ∈ Z(tw).

Now let w ∈W \W0. It suffices to show that ϕw(λ2n) > 0 for any n, where

bw(λ2n) = +− . . .+−︸     ︷︷     ︸
2n

.

For that we will use the oriented paintbox construction from [7], see Definition 5.4 and the
paragraph above Proposition 6.3 in that paper. Following its notation, it remains to prove
that the probability P (Π2n+1 = π2n+1) is non-zero, where in one-line notation the permuta-
tion π2n+1 ∈ S2n+1 is given by

π2n+1 = 1,2n+ 1,2,2n,3,2n− 1, . . .n− 1,n+ 3,n,n+ 2,n+ 1.

This fact immediately follows from the next observation. If w ∈ W \W0 contains infinitely
many intervals, then we can place random points inside different intervals in the desired
order. But if w ∈ W \W0 consists of finitely many intervals, then their common length is
strictly less then 1 and we can place our random points inside that complement to w, which
length is non-zero.
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Remark 5.4.5. If w ∈W0, then the template tw does not contain finite clusters except those
one-symbol clusters which are not outermost and whose two neighbors are infinite clusters
of the same sign. Such templates will be called finite. A template which is not finite will be
called semifinite, see Figure 5.4.

b)a)

Figure. 5.4: a) z(t) for the finite template t =
∞
+∞−

∞
+ 1−

∞
+ 1−

∞
+∞− 1

+∞− .
b) z(t) for the semifinite template t = 1−

∞
+∞− 1

+ 1−
∞
+ 2−

∞
+ 1− 1

+ 2−
∞
+∞− 1

+∞−.

Remark 5.4.6. Proposition 5.4.4 allows us to think of a finitary oriented paintbox w =
(w+,w−) as the infinite zigzag z(tw) endowed with a tuple of real numbers. Namely, we attach
lengths of the intervals from w+ and w− to infinite rows and columns of z(tw) respectively.
Moreover, we may identify the infinite zigzag z(tw) with an infinite path τ which completely
"fills" this zigzag, see the paragraph above Proposition 5.3.2. Starting from some point, this
path τ looks like a collection of growing rows and columns, hence we can treat the lengths
of intervals from w as frequencies of appearing new boxes in that rows and columns which
grow infinitely large.

5.4.2 A useful lemma

Now we would like to discuss a lemma, which we will use to prove a semifinite analog of
the Vershik-Kerov ring theorem for indecomposable semifinite harmonic functions on the
zigzag graph, Theorem 5.8.1.

Let u be an m-tuple of adjacent oriented intervals; their lengths will be denoted by
u1, . . . ,um. The only thing that differs u from a finitary oriented paintbox is that we do not
impose any restrictions on lengths of the intervals. For any zigzag λ the expression Fλ(u) is
defined by the formula from Proposition 5.4.2. Equivalently, we can define this expression
by Kerov’s construction (5.2). Then it is obvious that Fλ 7→ Fλ(u) is a homomorphism of
algebras QSym → R. We can also define a template tu in the same manner as for finitary
oriented paintboxes, see the paragraph above Proposition 5.4.4.

Now suppose that λ ∈ Z(tu) and bw(λ) contains as many blocks as possible. Then each
block of bw(λ) either corresponds to an interval of u or it is a one-symbol block that is placed
between two blocks corresponding to equally oriented intervals. The blocks corresponding
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to intervals of u will be denoted by Λ1, . . . ,Λm. Recall that |Λi | denotes the number of sym-
bols in the binary word Λi .

Let us introduce the following notation n1 (λ) = |Λ1|, nm (λ) = |Λm| and for any i =
2, . . . ,m− 1 we set

ni(λ) =


|Λi |+ 1, if the i − 1-st, i-th, i + 1-st intervals of u are equally oriented,
|Λi |, if the i-th interval of u has exactly one neighbor of the same orientation,
|Λi | − 1 otherwise.

Let us introduce more notation: s(u) = |S(u)|, where

S(u) = {i | 1 ≤ i ≤m : the i-th and the i + 1-st intervals of u have different orientations}.

Lemma 5.4.7. Assume that λ ∈ Z(tu) and bw(λ) contains as many blocks as possible. Then

Fλ(u) = un1(λ)
1 . . .u

nm(λ)
m ·

∑
ρ∈{0,1}s(u)

∏
i∈S(u)

ui+ρ(i),

where the sum is taken over all s(u)-tuples ρ, consisting of 0’s and 1’s.

Proof. The claim follows from the very definition of Fλ(u). Namely, the sum corresponds to
all possible splittings of λ mentioned above Proposition 5.4.2.

5.5 Semifinite templates

From Proposition 3.4.6 and Observation 5.3.3 with k = 1 it follows that for a finite template
t the graph Z(t) possess no strictly positive indecomposable semifinite harmonic functions,
hence Z(t) can not be realised as the support of an indecomposable semifinite harmonic
function on the zigzag graph. Thus, below we will be interested only in semifinite templates.

It turns out that for any semifinite template t the coideal Z(t) can be realised as the sup-
port of an indecomposable semifinite harmonic function on the zigzag graph. Moreover, for
indecomposable semifinite harmonic functions with the common support Z(t) the finite-
ness ideal depends only on t. In the present section we describe this finiteness ideal. Some
examples are given in the next section.

Definition 5.5.1. Let t be a semifinite template. By a separating cluster of t we mean a one-
symbol cluster which is not an outermost cluster of t and whose two neighbors are infinite
clusters of the same sign. By the zigzag flange of t we call a tuple of binary words each of
which consists of finite but not separating clusters of t standing nearby. The zigzag flange
will be denoted by fl(t).

For instance, if we take t = 1−
∞
+∞− 1

+ 1−
∞
+ 2−

∞
+ 1− 1

+ 2−
∞
+∞− 1

+∞−, which is the semifinite template

from Figure 5.4, then fl(t) = (1−, 1
+1−, 2−, 1− 1

+ 2−). So, the words from this zigzag flange correspond
to the first, second, third, and fourth grey zigzags on the Figure 5.4b):

Definition 5.5.2. Let t be a semifinite template. By a section of t we mean a maximal collec-
tion of consecutive clusters that form a finite template.
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Note that the words from the zigzag flange of t split t into sections.
For the above t the sections are

t1 =
∞
+∞−, t2 =

∞
+, t3 =

∞
+, t4 =

∞
+∞− 1

+∞−

and the splitting of t into sections is given by(
1−, t1,

1
+1−, t2, 2−, t3, 1− 1

+ 2−, t4
)
.

In terms of infinite zigzags, we split z(t) into infinite zigzags corresponding to sections
of t. For example, z(t) from Figure 5.4b) is split by the first, second, third, and fourth grey
zigzags into

z(t4) =z(t1) =

z(t3) =

z(t2) =

Remark 5.5.3. There are analogs of sections and zigzag flanges for the saturated primitive
coideals of the Young graph, see the picture on page 148 in [31]. Namely, each saturated
primitive coideal of the Young graph looks like a thick infinite hook with a flange consisting
of a single Young diagram. In our case of the zigzag graph, sections with a zigzag flange
play the role of that infinite hook with a Young diagram.

Definition 5.5.4. Let us set J(t) =
⋃
r Z(r), where the union is taken over all r obtained from

t by removing a single symbol from some cluster corresponding to a block of a binary word
from the zigzag flange fl(t).

Note that r from the definition above may fail to be a template, since r can contain two
neighbor clusters of the same sign. Anyway, the construction of Z(r) remains unchanged.
Namely, Z(r) is the coideal of Z corresponding to any path passing through the zigzags cor-
responding to binary words obtained from r by replacing infinite clusters with long enough
blocks. This means that we merge two neighbor clusters of the same sign in r into a bigger
cluster by adding their lengths.

The ideal Z(t)\J(t) of Z(t) is going to be the finiteness ideal of any strictly positive in-
decomposable semifinite harmonic function on Z(t). Recall that these functions are in an
obvious bijection with indecomposable semifinite harmonic functions on Z whose support
equals Z(t). Now we would like to describe the ideal Z(t)\J(t) in more details.

Let t be a semifinite template with k sections t1, . . . , tk. Assume that fl(t) = (a0, . . . , ak) and
the splitting of t into sections looks like

t = (a0, t1, a1, . . . , ak−1, tk , ak).

If a0 or ak is the empty binary word, then we should merely ignore it in all what follows.
For binary words a and b we write a > b if and only if the number of symbols in a is

greater then the number of symbols in b and b can be obtained from a by removing some
symbols. The symbol ⊔ denotes the concatenation of binary words. For instance, −⊔+ = −+,
2−⊔ 3− = 5− and the empty binary word is the identity for ⊔.
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Lemma 5.5.5.

1) If λ ∈ Z(t)\J(t), then

bw(λ) = a0 ⊔ bw(λ(1))⊔ a1 ⊔ . . .⊔ bw(λ(k))⊔ ak

for some λ(i) ∈ Z(ti), which are uniquely defined.

2) The following map

Z(t)\J(t)→ Z(t1)× . . .×Z(tk), λ 7→ (λ(1), . . . ,λ(k)),

provided by the first part of the lemma, defines an embedding of graded graphs2, see Definition
4.2.1. Moreover, the image of this embedding is an ideal.

Proof. 1) Obviously, we can write

bw(Z(t)) = {b0 ⊔ bw(λ(1))⊔ b1 ⊔ . . .⊔ bw(λ(k))⊔ bk | bi ≤ ai ,λ(i) ∈Z(ti)},
bw(J(t)) = {b0 ⊔ bw(λ(1))⊔ b1 ⊔ . . .⊔ bw(λ(k))⊔ bk | bi ≤ ai and ∃j : bj < aj ; λ

(i) ∈Z(ti)}.
So, it suffices to show that if λ ∈ Z(t)\J(t) and

bw(λ) = a0 ⊔ bw(λ(1))⊔ a1 ⊔ . . .⊔ bw(λ(k))⊔ ak =

= a0 ⊔ bw(λ̃(1))⊔ a1 ⊔ . . .⊔ bw(λ̃(k))⊔ ak ,
(5.3)

for some λ(i), λ̃(i) ∈ Z(ti), then λ̃(i) = λ(i).

Let us denote by m the natural number such that λ(1) = λ̃(1), . . . ,λ(m−1) = ˜λ(m−1), but λ(m) ,

λ̃(m). Equation (5.3) yields |bw(λ(m))| , |bw(λ̃(m))|, hence we may assume that |bw(λ̃(m))| >
|bw(λ(m))|. Then we can write

bw(λ̃(m)) = bw(λ(m))⊔ δ ∈ bw(Z(tm))

for some non-empty binary word δ. From equation (5.3) it follows that the first symbol
in δ is the same as in am. Thus, the condition bw(λ(m))⊔δ ∈ bw(Z(tm)) implies that λ ∈ J(t).
This contradiction proves the first part of the lemma.

2) Let us denote the map λ 7→ (λ(1), . . . ,λ(k)) by f . Let us show that λ,µ ∈ Z(t)\J(t) are joined
by an edge if and only if f (λ) and f (µ) are joined by an edge. Obviously, if f (λ)↗ f (µ),
then λ↗ µ. Suppose now that λ↗ µ. From the first part of the lemma it follows that

bw(λ) = a0 ⊔ bw(λ(1))⊔ a1 ⊔ . . .⊔ bw(λ(k))⊔ ak ∈ bw (Z(t)\J(t))

and
bw(µ) = a0 ⊔ bw(µ(1))⊔ a1 ⊔ . . .⊔ bw(µ(k))⊔ ak ∈ bw (Z(t)\J(t))

for some λ(i),µ(i) ∈ Z(ti).

The condition λ↗ µ means that we can obtain bw(λ) by removing a symbol from bw(µ).
Therefore, this symbol can be deleted only from some bw(µ(i)). The thing is that we can
not remove that symbol from some ai , because then the result belongs to bw(J(t)), but
λ < J(t). Thus, f (λ) and f (µ) are joined by an edge.

Suppose that λ ∈ Z(t)\J(t) and (µ1, . . . ,µk) ∈ Z(t1)× . . .×Z(tk). It is straightforward to check
that f (λ)↗ (µ1, . . . ,µk) yields (µ1, . . . ,µk) ∈ Im(f ). Thus, Im(f ) is an ideal.

2By an embedding f : Γ1→ Γ2 of graded graphs we mean an injective map between the sets of vertices such
that for any λ,µ ∈ Γ1 we have λ↗ µ if and only if f (λ)↗ f (µ).
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The map provided by Lemma 5.5.5 is not surjective by a trivial reason, since the element

(�, . . . ,�) ∈ Z(t1)× . . .×Z(tk),

corresponding to the empty zigzag at each factor, can not belong to the image. In fact, this
is not the only obstacle for this map to be surjective; see examples below.

5.6 Examples

For a binary word a we use the following notation

Z(t)a = {λ ∈ Z(t) | bw(λ) ≥ a}.

Example 5.6.1. Take t =
1
+∞−

∞
+ 1−

∞
+, then its zigzag flange consists of the binary word a0 =

1
+

and the single section is t1 = ∞−
∞
+ 1−
∞
+.

z(t) = z(t1) =

Next, J(t) = Z(t1). It is obvious that J(t) and Z(t)+−− do not intersect. Moreover, one can
check that Z(t) = J(t)∪Z(t)+−−. In an expanded form it reads as

Z

(
1
+∞−

∞
+ 1−

∞
+
)

= Z

(
∞−
∞
+ 1−
∞
+
)
∪Z

(
1
+∞−

∞
+ 1−

∞
+
)+−−

.

Let us prove this. Suppose that λ ∈ Z(t). We have to consider several cases.

• bw(λ) has 5 blocks. Then λ ∈ Z(t)+−−.

• bw(λ) has 4 blocks. Since there are only two types of binary words consisting of 4

blocks, it follows that either bw(λ) =
n1
+ n2−

n3
+n4− or bw(λ) = n1−

n2
+ n3−

n4
+ for some strictly

positive integers n1,n2,n3,n4. If the former, then λ ∈ Z(t)+−−; if the latter, then n3 = 1
and λ ∈ Z(t1).

• bw(λ) has 3 blocks. Then for some strictly positive integers n1,n2,n3 one of the follow-
ing holds:

– bw(λ) =
n1
+ n2−

n3
+ with n2 ≥ 2 and then λ ∈ Z(t)+−−;

– bw(λ) =
n1
+ 1−

n3
+ and λ ∈ Z(t1);

– bw(λ) = n1−
n2
+ n3− with n3 ≥ 2 and then λ ∈ Z(t)+−−;

– bw(λ) = n1−
n2
+ 1− and λ ∈ Z(t1).

• bw(λ) has 2 blocks. Then for some strictly positive integers n1,n2 one of the following
holds:

– bw(λ) = n1−
n2
+ and λ ∈ Z(t1);

– bw(λ) =
n1
+n2− with n2 ≥ 2 and then λ ∈ Z(t)+−−;
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– bw(λ) =
n1
+ 1− and λ ∈ Z(t1);

• bw(λ) consists of a single block. Then λ ∈ Z(t1).

Next, we describe the the map provided by Lemma 5.5.5.

For any zigzag λ ∈ Z(t)+−− we can write bw(λ) =
1
+⊔bw(λ) for a unique λ ∈ Z(t1) such that

bw(λ) contains at least two minuses. Thus, the map provided by Lemma 5.5.5 is given by

Z

(
1
+∞−

∞
+ 1−

∞
+
)+−−

−→ Z

(
∞−
∞
+ 1−
∞
+
)
, λ 7→ λ.

This map is not surjective, since bw(λ) contains at least two minuses. The image of this

map is the ideal generated by 2−, that is Z
(
∞−
∞
+ 1−
∞
+
)−−

.

The ideal Z(t)\J(t) in the previous example is generated by a single zigzag. The next
example shows that this is not the case in general.

Example 5.6.2. Take t = 1−
∞
+∞− 1

+∞−
∞
+∞− 1

+, then a0 = 1−, a1 =
1
+, t1 =

∞
+∞− 1

+∞−
∞
+∞−, and

J(t) = Z

(
1−
∞
+∞− 1

+∞−
∞
+∞−

)
∪Z

(∞
+∞− 1

+∞−
∞
+∞− 1

+
)
.

a) b) c)

Figure. 5.5: a) z(t), b) z
(

1−
∞
+∞− 1

+∞−
∞
+∞−

)
, c) z

(∞
+∞− 1

+∞−
∞
+∞− 1

+
)
.

It is not difficult to check that

Z(t)\J(t) = Z(t)−+−+−+−+ ∪Z(t)−
2
+−2

+−+.

Note that the first summand, which is isomorphic to the 5-th dimensional Pascal graph
P5, corresponds to the binary words having the maximal possible number of blocks.

We will show that the ideal Z(t)\J(t) can not be generated by a single zigzag.
Let us denote by ↓ (λ) the set of all lower adjacents of λ. Then

↓ (− 2
+− 2

+−+) =
{

2
+− 2

+−+,−+− 2
+−+,− 4

+−+,

− 2
+−+−+,− 2

+−3
+,− 2

+− 2
+−

}
and

↓ (−+−+−+−+) =
{
+−+−+−+, 2−+−+−+,− 2

+−+−+,−+ 2−+−+,

−+− 2
+−+,−+−+ 2−+,−+−+−2

+,−+−+−+−
}
.
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Thus,

↓ (−+−+−+−+) ∩ ↓ (− 2
+− 2

+−+) =
{
− 2

+−+−+,−+− 2
+−+

}
⊂ J(t)

and the ideal Z(t)\J(t) can not be generated by a single zigzag.

λ1 = bw(λ1) = −+−+−+−+

bw(λ2) = − 2
+− 2

+−+λ2 =

Figure. 5.6: Generators of the ideal Z(t)\J(t) for t = 1−
∞
+∞− 1

+∞−
∞
+∞− 1

+.

Thus, the graph Z(t)\J(t) is is not a branching graph but a graded graph, see Figure 5.7.
Let us describe the map from Lemma 5.5.5.
It is easy to check that the first block of bw(λ) for λ ∈ Z(t)\J(t) must be the negative one-

symbol block and the last block of bw(λ) must be the positive one symbol block. So, the
desired map is given by

Z(t)−+−+−+−+ ∪Z(t)−
2
+−2

+−+ −→ Z

(∞
+∞− 1

+∞−
∞
+∞−

)
, λ 7→ λ,

where t = 1−
∞
+∞− 1

+∞−
∞
+∞− 1

+ and bw(λ) = −⊔ bw(λ)⊔+.

In the next example we propose a sufficient condition for Z(t)\J(t) to be generated by a
single zigzag. This condition is not necessary, because the template t from Example 5.6.1
does not satisfy it, however the corresponding ideal is generated by a single zigzag.

Example 5.6.3. Let t be a semifinite template. We say that a cluster of t is internal if t neither
begins nor ends with this cluster. Let us denote by at the binary word obtained from t by
applying the following rules:

• if t begins or ends with an infinite cluster, then this infinite cluster is removed;

• each internal infinite cluster of t having an infinite neighbour is replaced by a one-
symbol cluster of the same sign;

• each infinite cluster standing between two finite clusters is removed.

For instance, at = − 2
+−+ 4− for t =

∞
+∞− 2

+∞−
∞
+ 1−

∞
+ 3− .

It is not difficult to check that Z(t)at is isomorphic as a graded graph to the Pascal graph
of an appropriate dimension.

Suppose that t satisfies the constraints:

• t avoids the following patterns

∞
+∞− 1

+∞−
∞
+ and ∞−

∞
+ 1−

∞
+∞−;

• t does not begin with
∞
+ 1−

∞
+∞− or ∞− 1

+∞−
∞
+;

• t does not end with
∞−
∞
+ 1−

∞
+ or

∞
+∞− 1

+∞−.
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Then
Z(t)\J(t) = Z(t)at .

Let us prove this. We will analyze the set Z(t)\Z(t)at in order to prove that it equals J(t).
The proof splits into the following parts:

1) if r is obtained from t by removing a separating symbol and merging the two infinite
clusters standing near that separating symbol, then there exists r ′ that can be obtained
from t by removing a symbol from a cluster corresponding to a word from the zigzag
flange of t and such that Z(r) ⊂ Z(r ′);

2) J(t) ⊂ Z(t)\Z(t)at ;

3) J(t) ⊃ Z(t)\Z(t)at

The first part of the proof. Since Z(r ′) is a coideal of Z(t), it is sufficient to show that any
binary word a ∈ bw(Z(r)) which has as many blocks as possible belongs to bw(Z(r ′)). More-
over, we can assume that the blocks of a are large enough that is, the blocks corresponding
to finite clusters are of maximal lengths and the blocks corresponding to infinite clusters
are of length, say, N , where N is large enough.

We have to deal with the one-symbol cluster of t which is a part of one of the following

patterns
∞
+ 1−

∞
+ or ∞− 1

+∞−. Let us restrict ourselves only to the first case. Then we can rewrite t
as

t = (p1,
∞
+ 1−

∞
+,p2),

where p1 and p2 are such that either p1 ends with a finite cluster or p2 starts with it. Note
that here we used the constraints on t listed above. The template r looks like

r = (p1,
∞
+,p2)

and the induced splitting of a reads as

a = a(1) ⊔N+⊔ a(2),

where a(1) ∈ bw(Z(p1)) and a(2) ∈ bw(Z(p2)) contain as many blocks as possible. Then we can
obtain the desired template r ′ by removing a symbol from that finite cluster of t with which
p1 ends or p2 begins.

The second part of the proof. Suppose that a ∈ bw(Z(r)) is a binary word consisting of
maximal possible number of blocks which are large enough, where r is obtained from t
by removing a symbol from a cluster corresponding to a word from the zigzag flange of t.
We will assume that the blocks of a corresponding to infinite clusters of t are of the same
length, which we denote by N . Then the number of infinite clusters in r is the same as in t
and equals the number of blocks of lengthN in a. These blocks of lengthN split a into parts
almost all of which are binary words from the zigzag flange of t, except one part, which
differs from a binary word from fl(t) by a single symbol. We may write this splitting and the
induced splitting of at as

a = a(1) ⊔ β ⊔ a(2)

at = a(1)
t ⊔α ⊔ a

(2)
t ,

where α is a binary word from fl(t) and β ↗ α. Then one can easily see that a(i) ≥ a(i)
t for

i = 1,2, but
a(1)

≱ a
(1)
t ⊔ δ1 and a(2)

≱ δ2 ⊔ a
(2)
t ,

where δ1 and δ2 denote single symbols from the first and the last clusters of α.

71



Thus, a ≱ at and the claim follows.
The third part of the proof. For notational simplicity, let us assume that the first cluster of

t is of sign plus and the total number of clusters in t is even. We denote this number by n.
Then we can write

t =
k1
+ k2− . . .

kn−1
+ kn−,

where k1, . . . , kn is the tuple of formal multiplicities of t, some of which may be infinite.
Furthermore,

bw(Z(t)) = {
l1
+ l2− . . .

ln−1
+ ln− | li ≤ ki}.

Let us denote by I ⊂ {1,2, . . . ,n} the positions of finite clusters of t. Then

bw (Z(t)at ) =
{
l1
+ l2− . . .

ln−1
+ ln−

∣∣∣∣∣∣ • li = ki if i ∈ I ;
• li ≥ 1 if i < I, i , 1,n, and i + 1 < I or i − 1 < I

}
.

So, if
l1
+ l2− . . .

ln−1
+ ln− ∈ bw(Z(t)\Z(t)at ), then at least one of the following conditions must hold

1) li ≤ ki − 1 for some i ∈ I

2) li = 0 for some i such that 2 ≤ i ≤ n− 1, i < I , and i + 1 < I or i − 1 < I .

Thus, from the first part of the proof it follows that to prove the desired inclusion it

suffices to show that any binary word a =
l1
+ l2− . . .

ln−1
+ ln− satisfying the second condition above

belongs to bw(Z(r)) for some r which can be obtained from t by removing a symbol from a
finite cluster. In order to do so, we rewrite t in the following way

t = s1 ⊔ s⊔ s2

with s being the maximal template consisting only of infinite clusters and containing the
i-th infinite cluster of t, where i is the number from the second condition above for our
binary word a. Note that then s2 either begins with a finite cluster or is empty; if the latter,
then s1 ends with a finite cluster. Anyway, it is obvious that we can obtain the desired r by
removing a single symbol from a cluster of t which is neighbour to s and is an outermost
cluster of s1 or s2.

5.7 Main result: harmonic functions on Z(t)

From Proposition 3.4.6 and Observation 5.3.3 with k = 1 it follows that for a finite template
t the graph Z(t) possess no strictly positive indecomposable semifinite harmonic functions,
hence Z(t) can not be realised as the support of an indecomposable semifinite harmonic
function on the zigzag graph. Then Propositions 3.3.16 and 5.3.2 imply that in order to de-
scribe all indecomposable semifinite harmonic functions on the zigzag graph it is sufficient
to describe all strictly positive indecomposable semifinite harmonic functions on Z(t) for
any semifinite template t. That is what we do in the present section.

Now we would like to introduce some strictly positive functions on the graph Z(t), see
Definition 5.7.3. Below we prove that they are pairwise distinct and form an exhaustive list
of indecomposable semifinite harmonic functions on Z(t).

Definition 5.7.1. By a semifinite zigzag growth model we call a pair (t,w), where t is a semifi-
nite template having m infinite clusters and w = (w1, . . . ,wm) is an m-tuple of positive real
numbers such that w1 + . . .+wm = 1.
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Remark 5.7.2. We can assume that these real numbers w1, . . . ,wm are assigned to infinite
clusters of t. Then we can identify a semifinite zigzag growth model (t,w) with the infinite
zigzag z(t) endowed with a tuple of frequencies, see Remark 5.4.6. Furthermore, we can
treat this w as a finitary oriented paintbox the i-th interval component of which is of length
wi ; orientation of this interval component is defined by the sign of the corresponding infinite
cluster of t: the orientation is positive if the cluster is positive and the orientation is negative
if the cluster is negative.

Let t have k sections t1, . . . , tk. Assume that fl(t) = (a0, . . . , ak) and the splitting of t into
sections looks like

t = (a0, t1, a1, . . . , ak−1, tk , ak).

If a0 or ak is the empty binary word, then we should merely ignore it in all what follows.
Let (t,w) be a semifinite zigzag growth model. The splitting of t into sections gives us a

splitting of w
w = v1 ⊔ . . .⊔ vk ,

where each vi is a tuple of real numbers from w = (w1, . . . ,wm) corresponding to the infinite
clusters of ti . Note that we may treat each vi as a collection of oriented subintervals of (0,1);
the only thing that differs vi from a finitary oriented paintbox is the total length of intervals
from vi , which may not be equal to 1.

Definition 5.7.3. For any λ ∈ Z(t) we set

ϕt,w(λ) =

Fλ(1)(v1) · . . . ·Fλ(k)(vk), if λ ∈ Z(t)\J(t)
+∞, if λ ∈ J(t),

where λ 7→ (λ(1), . . . ,λ(k)) is the map provided by Lemma 5.5.5 and Fλ(i)(vi) is defined by
Kerov’s construction (5.2) or by the formula from Proposition 5.4.2.

Example 5.7.4. Take t =
∞
+ 1− 1

+∞−. Then a0 and a2 are empty binary words, a1 = 1−1
+, t1 =

∞
+,

and t2 = ∞−.

z(t1) =z(t) = z(t2) =

a1 =

Next, J(t) = Z

(∞
+∞−

)
and

Z(t)\J(t) = Z

(∞
+ 1− 1

+∞−
)−+

.

Recall that the superscript denotes the zigzags which binary words contain −+.
The map

Z

(∞
+ 1− 1

+∞−
)−+
−→ Z

(∞
+
)
×Z

(∞−)
provided by Lemma 5.5.5 is given by

n
+ − +m− 7→ (

n
+,m−) and turns out to be as surjective as

possible, see the paragraph below the proof of Lemma 5.5.5.
Let w1 and w2 be real positive numbers such that w1 +w2 = 1. Then
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ϕt,w(λ) =


wn+1

1 wm+1
2 , if bw(λ) =

n
+−+m− with n,m ≥ 0,

+∞, if λ ∈ Z
(∞
+∞−

)
.

It is straightforward to check that ϕt,w is a harmonic function. Let us show that it is
semifinite. This means that for any

n
+m− ∈ bw(J(t)) we have to find an approximating sequence,

see Remark 3.3.6. Note that we can assume that these n and m are large enough, since if
λ ≥ µ and {aN }N≥1 is an approximating sequence for λ, then {aN }N≥1 is an approximating
sequence for µ as well. In fact, we will use only the bound n,m ≥ 2. Below we treat binary
word belonging to bw(Z(t)) as elements of K0(Z(t)), see Section 3.

We argue that

aN =N · n−1
+ −+ m−1−

for N ≥ 1 form an approximating sequence for
n
+m−. Let us prove this.

Since
ϕt,w(aN ) =N ·wn1w

m
2

it follows that
ϕt,w(aN ) < +∞

and
ϕt,w(aN )→ +∞ as N → +∞.

Thus, it suffices to show that
n
+m− ≥K aN ; for the definition of ≥K see Section 3.

By the harmonicity condition for any N ≥ 1 we can write

n
+m− =

∑
λ∈Z(t) :

|λ|=n+m+N+1

dim(
n
+m−,λ) ·λ ≥K

∑
n1,m1≥0:
n1+m1=N

dim
(
n
+m−,

n1+n−1
+ −+m1+m−1−

)
·
n1+n−1

+ −+ m1+m−1− .

The harmonicity condition also implies

aN =N ·
∑

n1,m1≥0:
n1+m1=N

dim
(
n−1
+ −+ m−1− ,

n1+n−1
+ −+ m1+m−1−

)
·
n1+n−1

+ −+ m1+m−1− .

Note that

dim
(
n−1
+ −+ m−1− ,

n1+n−1
+ −+ m1+m−1−

)
=

(
N

n1,m1

)
,

where
(
a+ b
a,b

)
denotes the binomial coefficient

(a+ b)!
a!b!

.

Then the desired claim immediately follows from the next observation.

dim
(
n
+m−,

n1+n−1
+ −+m1+m−1−

)
= n1 ·

(
N

n1,m1

)
+m1 ·

(
N

n1,m1

)
=N ·

(
N

n1,m1

)
. (5.4)

Let us explain the origin of the first summand in (5.4). It equals the number of the

following paths in the zigzag graph going from
n
+m− to

n1+n−1
+ − +m1+m−1− . Up to some point

we increase only the two blocks of
n
+m− and then we add the plus that increases the number
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of blocks in the word; after that, we increase only the outermost blocks again. So, we may
treat each such path as an ordered collection of pluses and minuses, which we add to the
original word

n
+m−; one plus, which increases the number of blocks, is marked. This collection

is of length N and there are n1 pluses in it. Only two things that may vary are positions of
ordinary pluses, which we add to the leftmost block, and the position of that special plus
that increases the number of blocks. So, we have to choose n1 elements from the set of N
elements and mark one of the chosen elements. The number of all such choices equals

n1 ·
(
N

n1,m1

)
.

The second summand in (5.4) comes from the similar picture but for minuses. In fact,
we have just proved the inequality ≥ in (5.4). But one can easily see that this is indeed an
equality for n,m ≥ 2.

Finally, we shall prove that ϕt,w is indecomposable. Suppose that ψ is a finite or semifi-
nite harmonic function on Z(t) such that ϕt,w ≥ ψ. The ideal Z(t)\J(t) is isomorphic to the
2-dimensional Pascal graph P2 and the restriction of ϕt,w to this ideal is an indecomposable
harmonic function. Thus, ϕt,w and ψ are proportional on Z(t)\J(t) as desired.

Theorem 5.7.5.

1) For any semifinite zigzag growth model (t,w) the function ϕt,w is a semifinite indecomposable
harmonic function on Z(t).

2) Any strictly positive semifinite indecomposable harmonic function on the graph Z(t) is propor-
tional to ϕt,w for some semifinite zigzag growth model (t,w).

3) The functions ϕt,w are distinct for distinct semifinite zigzag growth models (t,w).

To prove this theorem we need the following lemma.

Lemma 5.7.6. Let ϕ be a strictly positive harmonic function on Z(t). Then for any λ ∈ J(t) we
have ϕ (λ) = +∞.

Proof. Recall that

(J(t)) = {b0 ⊔ (λ(1))⊔ b1 ⊔ . . .⊔ (λ(k))⊔ bk | bi ≤ ai and ∃j : bj < aj ; λ
(i) ∈Z(ti)}.

The set on which a harmonic function takes the value +∞ is a coideal. Therefore, without
loss of generality, we may assume that

bw(λ) = a0 ⊔ bw(λ1)⊔ a1 ⊔ . . .⊔ bw(λj)⊔ bj ⊔ bw(λj+1)⊔ aj+1 ⊔ . . .⊔ bw(λk)⊔ ak (5.5)

for some j, where bj ↗ aj and each bw(λi) ∈ bw (Z(vi)) contains as many blocks as possible
and all these blocks are large enough.

We will consider two cases:

1) the block of aj from which we remove a symbol to obtain bj is not an outermost block
of aj or it consists of 2 or more symbols;

2) we remove a symbol from an outermost block of aj which is of length 1.

The first case. We denote by t the template obtained from t by replacing aj with bj . Then
λ ∈ Z(t) and we can write (

Z(t)
)λ

=
(
Z(t)

)λ
⊔

(
Z(t)

)λ′
, (5.6)
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where λ′ is defined as follows

bw(λ′) = a0 ⊔ bw(λ1)⊔ a1 ⊔ . . .⊔ bw(λj)⊔ aj ⊔ bw(λj+1)⊔ aj+1 ⊔ . . .⊔ bw(λk)⊔ ak .

Superscripts λ and λ′ in (5.6) mean that we take all the zigzags that are greater than or equal
to λ and λ′ respectively.

Note that there is an isomorphism of graded graphs(
Z(t)

)λ
→

(
Z(t)

)λ′
,

which adds back the removed symbol bj 7→ aj . This map is indeed an isomorphism, since
each of these graphs is isomorphic to the Pascal graph of an appropriate dimension. Finally,
from Lemma 3.5.6 it follows that ϕ (λ) = +∞.

The second case. We may assume that aj = +− or aj = −+. The point is that for all other
aj we can find a vertex which majorizes λ and satisfies the conditions of the first case above.
We will restrict ourselves to the case aj = −+. Then we may rewrite (5.5) as

bw(λ) = a0 ⊔ bw(λ1)⊔ a1 ⊔ . . .⊔ bw(λj)⊔ bw(λj+1)⊔ . . .⊔ bw(λk)⊔ ak
for some λi ∈ Z(ti), because when we delete a symbol from −+ inside bw(λ) the remaining
symbol is merged into bw(λj) or bw(λj+1). Since each bw(λi) contains as many blocks as

possible and their lengths are large enough, it follows that bw(λj) = α ⊔ n
+ for some "large

enough" binary word α and a natural number n.
Let us define a zigzag λ′ as follows

bw(λ′) = a0 ⊔ bw(λ1)⊔ a1 ⊔ . . .⊔ bw(λj−1)⊔ aj−1

⊔α ⊔ n−1
+ ⊔ 1−⊔ 1

+⊔ bw(λj+1)⊔ aj+1 ⊔ . . .⊔ bw(λk−1)⊔ ak .

Now we are ready to apply Lemma 3.5.3. Below we use the notation from this lemma.
Let I ⊂ Z(t) be the ideal corresponding to the binary words that contain as many blocks

as possible, provided that all blocks corresponding to the zigzag flange of t are of maximal
lengths. Obviously, this ideal I is isomorphic as a graded graph to the Pascal graph of an
appropriate dimension and λ′ ∈ I , since α, which appeared in the definition of λ′, is "large
enough". Then dim(λ′,η) on the right hand side of inequality (3.7) from Lemma 3.5.3 is
a multinomial coefficient which arguments are merely differences between lengths of the
blocks of bw(λ′) and bw(η) corresponding to infinite clusters of t. Then it is easy to check
that inequality (3.7) from Lemma 3.5.3 is fulfilled, because there is a summand on the left
hand side of (3.7) which is equal to dim(λ′,η). This summand corresponds to µ obtained
from η by removing − from aj , appeared in the decomposition of bw(η) provided by Lemma
5.5.5.

Proof of Theorem 5.7.5. Let us prove the first two parts of the theorem. We will do it by a
single argument.

Lemma 5.7.6 implies that any strictly positive harmonic function on Z(t) is not finite.
Then Theorem 3.3.14 provides a bijection between strictly positive indecomposable semifi-
nite harmonic functions on Z(t) and strictly positive indecomposable finite and semifinite
harmonic functions on Z(t)\J(t). Recall that this bijection is defined by restriction of a func-
tion from Z(t) to Z(t)\J(t). By Lemma 5.5.5 there is an injective homomorphism of graded
graphs

Z(t)\J(t) ↪→ Z(t1)× . . .×Z(tk),
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which image is an ideal. So, applying Theorem 3.3.14 once again we obtain a bijection be-
tween strictly positive indecomposable finite and semifinite harmonic functions on Z(t)\J(t)
and

Z(t1)× . . .×Z(tk).

Propositions 4.2.6 and 5.4.4 yield that this graph admits a finite strictly positive inde-
composable harmonic function. Then by Observation 5.3.3 and Proposition 3.4.6 it does
not possess any strictly positive semifinite indecomposable harmonic functions. Hence the
strictly positive indecomposable finite harmonic functions on this graph are in bijection
with strictly positive finite and semifinite indecomposable harmonic functions on Z(t)\J(t).
In particular, this means that the graph Z(t)\J(t) does not possess strictly positive semifinite
indecomposable harmonic functions, because the aforementioned bijection is defined by the
restriction of functions from the whole graph to an ideal which is isomorphic to Z(t)\J(t).

Next, by Proposition 4.2.6, Theorem 5.4.3, and Proposition 5.4.4 each strictly positive
indecomposable finite harmonic function on the graph

Z(t1)× . . .×Z(tk)

is of the form
(λ(1), . . . ,λ(k)) 7→ Fλ(1)(v1) . . .Fλ(k)(vk),

where vi is a tuple of oriented consecutive subintervals of (0,1) which orientations are de-
fined by the signs of infinite clusters of ti ; the total length of all intervals of all vi ’s equals
1.

Then each strictly positive finite indecomposble harmonic function on Z(t)\J(t) is of the
form

λ 7→ Fλ(1)(v1) . . .Fλ(k)(vk),

where λ 7→ (λ(1), . . . ,λ(k)) is the map provided by Lemma 5.5.5.
The only thing we are left to do is to indicate how each of these functions should be

extended from Z(t)\J(t) to the whole graph Z(t). For that purpose we use Lemma 5.7.6.
To see that the functions ϕt,w are distinct for distinct (t,w) we note that the functions

(λ(1), . . . ,λ(k)) 7→ Fλ(1)(v1) . . .Fλ(k)(vk)

are distinct as functions on
Z(t1)× . . .×Z(tk)

and by Theorem 3.3.14 the restriction of a function from this graph to an ideal isomorphic to
Z(t)\J(t) is a bijection between finite strictly positive indecomposable harmonic functions.

5.8 Semifinite analog of the Vershik-Kerov ring theorem

Recall that by a semifinite analog of the ring theorem we mean Theorem 3.4.4. The following
proposition describes the finite indecomposable harmonic function that is related to ϕt,w by
this theorem.

Theorem 5.8.1. Let (t,w) be a semifinite zigzag growth model. For any µ ∈ Z(t)\J(t) and λ ∈ Z
we have

ϕt,w
(
FλFµ

)
= ϕw(Fλ)ϕt,w(Fµ),

whereϕw is the finite harmonic function associated to the finitary oriented paintboxw, see Remark
5.7.2.
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Before we start proving this proposition, we need to discuss one preparatory statement,
which might be interesting in itself.

Recall the notation. The zigzag flange of t is denoted by fl(t) = (a0, . . . , ak) and the splitting
of t into sections looks like

t = (a0, t1, a1, . . . , ak−1, tk , ak).

The induced splitting of w reads as w = v1 ⊔ . . .⊔ vk.
Let us denote by vi(ti) the collection of adjacent intervals on the real line corresponding

to the finite template ti and the tuple of numbers vi . Namely, the length of the j-th interval
in vi(ti) equals (vi)j and the orientation of this interval coincides with the sign of the j-th
infinite cluster of ti . It will be of no importance to us where the leftmost boundary point of
vi(ti) is placed; only lengths of intervals and their orientations matter.

Let ε be a real positive number. For any binary word a we denote by ε(a) a tuple of
adjacent oriented intervals each of which corresponds to a block of a; orientation of the
interval is equal to sign of the block; all intervals are of length ε.

Then we define wε as a collection of adjacent intervals from ε(a0), . . . , ε(ak) and
v1(t1), . . . , vk(tk) taken in the order proposed by the splitting of t into sections, that is

wε =
(
ε(a0),v1(t1), ε(a1),v2(t2), . . . , vk(tk), ε(ak)

)
,

see Figure 5.8.
We do not specify where to place the leftmost boundary point of wε because it is not

important in what follows. Note that the total length of wε equals 1 +O(ε).

+++ +− −+ −−
w4w3w1 w5w2 w6ε εε ε

−
ε

+

ε
−
ε

− −
w7

Figure. 5.8: The collection of adjacent intervals wε for the semifinite zigzag growth model
(t,w) with the semifinite template

t = 1−
∞
+∞− 1

+ 1−
∞
+ 2−

∞
+ 1− 1

+ 2−
∞
+∞− 1

+∞−
from Figure 5.3. The length and orientation of an interval are indicated above the interval.

Furthermore, we can define a template twε in the same way as for oriented paintboxes,
see the paragraph above Proposition 5.4.4. Then twε is a finite template and we may view
wε as an infinite zigzag z(twε) endowed with a tuple of real positive numbers, see Remark
5.4.6. Some of these real numbers equal ε while others come from w. The infinite rows and
columns to which the number ε is assigned correspond to the zigzag flange of t. So, z(twε) is
obtained from z(tw) by enlarging the rows and columns corresponding to the binary words
from the zigzag flange. Namely, we replace these finite rows and columns with infinite ones,
see Figure 5.9.

Let us denote by νt the zigzag obtained from z(t) by replacing each infinite row or col-
umn with a row or column of length 2. Then bw(νt) is the binary word obtained from t by
replacing each infinite symbol with a single symbol of the same sign.

Obviously, νt ∈ Z(t)\J(t) and Z(t)νt ,
(
Z(twε)

)νt
are isomorphic to Pascal graphs of an ap-

propriate dimensions. Recall that the superscript νt means that we take all zigzags greater
than or equal to νt.
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a)

b)

a) The infinite zigzag z(t) for

t = 1−
∞
+∞− 1

+ 1−
∞
+ 2−

∞
+ 1− 1

+ 2−
∞
+∞− 1

+∞−

b) The infinite zigzag z(twε), corresponding to t from a);

twε = ∞−
∞
+∞−

∞
+∞−

∞
+∞−

∞
+∞−

∞
+∞−

∞
+∞− 1

+∞−

Figure. 5.9

Proposition 5.8.2. There exists a natural number n, which depends only on t, such that for any

µ ∈
(
Z(twε)

)νt
we have

ϕt,w (µ) = const · lim
ε→0

1
εn
Fµ (wε) , (5.7)

where const does not depend on µ, but may depend on (t,w); recall that Fλ(wε) is defined by
Kerov’s construction (5.2), see Section 5.4.2.

Proof. To obtain the claim we should apply Lemma 5.4.7 to each multiple in Definition 5.7.3
and to the right hand side of (5.7).

Remark 5.8.3. Equality (5.7) obviously holds for any µ < Z(twε), because in that case it turns
into the trivial identity 0 = 0.

Proof of Theorem 5.8.1. Let us denote by cνλ,µ the structure constants of multiplication in
QSym written in the basis of fundamental quasisymmetric functions, i.e.

FλFµ =
∑
ν

cνλ,µFν .
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Note that cνλ,µ ≥ 0 and cνλ,µ , 0 only if ν > λ,µ, see [17, p.35, (3.13)].

Then for any λ ∈ Z and µ ∈ Z(t)νt ⊂
(
Z(twε)

)νt
we can write

ϕt,w
(
FλFµ

)
=

∑
ν

cνλ,µϕt,w (Fν) =
∑
ν

cνλ,µ const · lim
ε→0

1
εn
Fν (wε) =

const · lim
ε→0

1
εn

∑
ν

cνλ,µFν (wε)

 = const · lim
ε→0

[
1
εn
Fλ (wε)Fµ (wε)

]
=

const ·
[

lim
ε→0

Fλ (wε)
]
·
[

lim
ε→0

1
εn
Fµ (wε)

]
= Fλ(w)ϕt,w

(
Fµ

)
.

We used formula (5.7) for ϕt,w (Fν), because ν > µ and then either ν ∈
(
Z(twε)

)νt
or ν <

Z(twε).
Thus, the finite indecomposable harmonic function ψ from Theorem 3.4.4 applied to

ϕt,w equals ϕw.
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Chapter 6

Conclusion

6.1 Conclusion en français

En conclusion, cette thèse a abordé le problème de la classification des fonctions har-
moniques semi-finies sur plusieurs graphes de branchement. Inspirée par la suggestion
d’A.J. Wassermann d’utiliser une bijection entre les représentations de facteur fidèles d’une
C∗-algèbre primitive A et celles d’un idéal fermé bilatère arbitraire de A pour la classifica-
tion des traces semi-finies sur le groupe symétrique infini, une version combinatoire de la
méthode de Wassermann a été développée. De plus, cette approche combinatoire a été ap-
pliquée pour décrire les fonctions harmoniques semi-finies sur le produit direct de graphes
de branchement en termes de fonctions similaires sur les facteurs. La thèse se termine
par l’exploration de la classification des fonctions harmoniques semi-finies sur le graphe
en zigzag.

En résumé, cette thèse contribue à la compréhension et à la classification des fonctions
harmoniques semi-finies sur les graphes de branchement. Le cadre combinatoire développé
et l’application de la méthode de Wassermann fournissent des outils précieux pour aborder
les problèmes de classification des traces sur les C∗-algèbres AF.

6.2 Conclusion in English

In conclusion, this thesis has addressed the problem of classifying semifinite harmonic func-
tions on several branching graphs. Inspired by A.J. Wassermann’s suggestion to use a bijec-
tion between faithful factor representations of a primitive C∗-algebra A and those of an
arbitrary closed two-sided ideal of A for the classification of semifinite traces on the infinite
symmetric group, a combinatorial version of Wassermann’s method has been developed.
Furthermore, this combinatorial approach has been applied to describe semifinite harmonic
functions on the direct product of branching graphs in terms of similar functions on the fac-
tors. The thesis concludes by exploring the classification of semifinite harmonic functions
on the zigzag graph.

In summary, this thesis contributes to the understanding and classification of semifinite
harmonic functions on branching graphs. The developed combinatorial framework and the
application of Wassermann’s method provide valuable tools for addressing classification
problems of traces on AF-algebras.
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Fonctions harmoniques sur les graphes ramifiés

La théorie classique des caractères des groupes finis et des groupes compacts peut être généralisée
à d’autres classes de groupes et d’algèbres de diverses manières. Pour les groupes et les C∗-algèbres
qui ne sont pas de type I, la théorie des caractères n’est pas liée aux représentations irréductibles mais
aux représentations des facteurs normaux, c’est-à-dire aux homomorphismes des algèbres de von
Neumann avec une trace finie ou semi-finie. Pour les AF-algèbres, on peut reformuler la théorie des
caractères dans un langage combinatoire-algébrique grâce aux fonctions harmoniques non négatives
sur les diagrammes de Bratteli. Les fonctions harmoniques qui prennent uniquement des valeurs
finies sont en bijection avec les traces finies. Les traces semi-finies conduisent à des fonctions har-
moniques semi-finies, qui peuvent prendre la valeur +∞ de telle manière que ces valeurs infinies
puissent être approximées par des valeurs finies. Pour classer les traces semi-finies sur le groupe
symétrique infini, A.J.Wassermann a suggéré en 1981 d’utiliser une bijection entre les représenta-
tions de facteurs fidèles d’une C∗-algèbre primitive A et celles d’un idéal bilatère fermé arbitraire
de A. Nous développons une version combinatoire de la méthode de Wassermann. Ensuite, nous
l’appliquons pour décrire les fonctions harmoniques semi-finies sur le produit direct de graphes de
branchement en termes de fonctions similaires sur les facteurs. La dernière partie de la thèse est
consacrée à la classification des fonctions harmoniques semi-finies sur le graphe en zigzag.

Mots clés: Diagrammes de Bratteli, graphes ramifiés, fonctions harmoniques, traces semi-finies,
algèbres AF, mesures invariantes.

Harmonic functions on branching graphs

Classical character theory of finite and compact groups may be generalized to other classes of
groups and algebras in various ways. For groups and C∗-algebras not of type I the character theory is
related not to irreducible representations but to normal factor representations, i.e. homomorphisms
to von Neumann algebras with a finite or semifinite trace. For AF-algebras one can reformulate
the character theory in a combinatorial-algebraic language, speaking about non-negative harmonic
functions on Bratteli diagrams. Harmonic functions that take only finite values are in bijection with
finite traces. Semifinite lower semicontinuous traces lead to semifinite harmonic functions, which may
take the value +∞ in such a way that these infinite values can be approximated by finite ones. In
order to classify the semifinite traces on the infinite symmetric group A.J.Wassermann suggested in
1981 to use a bijection between faithfull factor representations of a primitive C∗-algebra A and those
of an arbitrary closed two-sided ideal of A. We develop a combinatorial version of Wassermann’s
method. Subsequently, we apply it to describe semifinite harmonic functions on the direct product
of branching graphs in terms of similar functions on the factors. The last part of the thesis is devoted
to classification of semifinite harnomic functions on the zigzag graph.

Keywords: Bratteli diagrams, branching graphs, harmonic functions, semifinite traces, AF-
algebras, invariant measures.
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